Rotator cuff tears are a significant clinical problem previously investigated by unvalidated computational models that either use simplified geometry or isotropic elastic material properties to represent the tendon. The objective of this study was to develop an experimentally validated, finite element model of supraspinatus tendon using specimen-specific geometry and inhomogeneous material properties to predict strains in intact supraspinatus tendon at multiple abduction angles. Three-dimensional tendon surface strains were determined at 60 deg, 70 deg, and 90 deg of glenohumeral abduction for articular and bursal surfaces of supraspinatus tendon during cyclic loading (5–200 N, 50 cycles, 20 mm/min) to serve as validation data for computational model predictions. A finite element model was developed using the tendon geometry and inhomogeneous material properties to predict surface strains for loading conditions mimicking experimental loading conditions. Experimental strains were directly compared with computational model predictions to validate the model. Overall, the model successfully predicted magnitudes of strains that were within the experimental repeatability of 3% strain of experimental measures on both surfaces of the tendon. Model predictions and experiments showed the largest strains to be located on the articular surface (∼8% strain) between the middle and the anterior edge of the tendon. Importantly, the reference configuration chosen to calculate strains had a significant effect on strain calculations, and therefore, must be defined with an innovative optimization algorithm. This study establishes a rigorously validated specimen-specific (both geometry and material properties) computational model using novel surface strain measurements for the use in investigating the function of the supraspinatus tendon and to ultimately predict the propagation of supraspinatus tendon tears based on the tendon's mechanical environment.

References

References
1.
Yamamoto
,
A.
,
Takagishi
,
K.
,
Osawa
,
T.
,
Yanagawa
,
T.
,
Nakajima
,
D.
,
Shitara
,
H.
, and
Kobayashi
,
T.
,
2010
, “
Prevalence and Risk Factors of a Rotator Cuff Tear in the General Population
,”
J. Shoulder Elbow Surg.
,
19
(
1
), pp.
116
120
.
2.
Yamaguchi
,
K.
,
Ditsios
,
K.
,
Middleton
,
W. D.
,
Hildebolt
,
C. F.
,
Galatz
,
L. M.
, and
Teefey
,
S. A.
,
2006
, “
The Demographic and Morphological Features of Rotator Cuff Disease. A Comparison of Asymptomatic and Symptomatic Shoulders
,”
J. Bone Jt. Surg. Am.
,
88
(
8
), pp.
1699
1704
.
3.
Tempelhof
,
S.
,
Rupp
,
S.
, and
Seil
,
R.
,
1999
, “
Age-Related Prevalence of Rotator Cuff Tears in Asymptomatic Shoulders
,”
J. Shoulder Elbow Surg.
,
8
(
4
), pp.
296
299
.
4.
Andarawis-Puri
,
N.
,
Ricchetti
,
E. T.
, and
Soslowsky
,
L. J.
,
2009
, “
Rotator Cuff Tendon Strain Correlates With Tear Propagation
,”
J. Biomech.
,
42
(
2
), pp.
158
163
.
5.
Huang
,
C. Y.
,
Wang
,
V. M.
,
Pawluk
,
R. J.
,
Bucchieri
,
J. S.
,
Levine
,
W. N.
,
Bigliani
,
L. U.
,
Mow
,
V. C.
, and
Flatow
,
E. L.
,
2005
, “
Inhomogeneous Mechanical Behavior of the Human Supraspinatus Tendon Under Uniaxial Loading
,”
J. Orthop. Res.
,
23
(
4
), pp.
924
930
.
6.
Reilly
,
P.
,
Amis
,
A. A.
,
Wallace
,
A. L.
, and
Emery
,
R. J.
,
2003
, “
Mechanical Factors in the Initiation and Propagation of Tears of the Rotator Cuff. Quantification of Strains of the Supraspinatus Tendon In Vitro
,”
J. Bone Jt. Surg. Br.
,
85
(
4
), pp.
594
599
.
7.
Bey
,
M. J.
,
Song
,
H. K.
,
Wehrli
,
F. W.
, and
Soslowsky
,
L. J.
,
2002
, “
Intratendinous Strain Fields of the Intact Supraspinatus Tendon: The Effect of Glenohumeral Joint Position and Tendon Region
,”
J. Orthop. Res.
,
20
(
4
), pp.
869
874
.
8.
Miller
,
R. M.
,
Fujimaki
,
Y.
,
Araki
,
D.
,
Musahl
,
V.
, and
Debski
,
R. E.
,
2014
, “
Strain Distribution Due to Propagation of Tears in the Anterior Supraspinatus Tendon
,”
J. Orthop. Res.
,
32
(
10
), pp.
1283
1289
.
9.
Engelhardt
,
C.
,
Farron
,
A.
,
Becce
,
F.
,
Pioletti
,
D.
, and
Terrier
,
A.
,
2014
, “
Impact of Partial-Thickness Tears on Supraspinatus Tendon Strain Based on a Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
Suppl. 1
), pp.
118
119
.
10.
Thunes
,
J.
,
Miller
,
R. M.
,
Pal
,
S.
,
Damle
,
S.
,
Debski
,
R. E.
, and
Maiti
,
S.
,
2015
, “
The Effect of Size and Location of Tears in the Supraspinatus Tendon on Potential Tear Propagation
,”
ASME J. Biomech. Eng.
,
137
(
8
), p.
081012
.
11.
Funakoshi
,
T.
,
Suenaga
,
N.
,
Sano
,
H.
,
Oizumi
,
N.
, and
Minami
,
A.
,
2008
, “
In Vitro and Finite Element Analysis of a Novel Rotator Cuff Fixation Technique
,”
J. Shoulder Elbow Surg.
,
17
(
6
), pp.
986
992
.
12.
Sano
,
H.
,
Hatta
,
T.
,
Yamamoto
,
N.
, and
Itoi
,
E.
,
2013
, “
Stress Distribution Within Rotator Cuff Tendons With a Crescent-Shaped and an L-Shaped Tear
,”
Am. J. Sports Med.
,
41
(
10
), pp.
2262
2269
.
13.
Seki
,
N.
,
Itoi
,
E.
,
Shibuya
,
Y.
,
Wakabayashi
,
I.
,
Sano
,
H.
,
Sashi
,
R.
,
Minagawa
,
H.
,
Yamamoto
,
N.
,
Abe
,
H.
,
Kikuchi
,
K.
,
Okada
,
K.
, and
Shimada
,
Y.
,
2008
, “
Mechanical Environment of the Supraspinatus Tendon: Three-Dimensional Finite Element Model Analysis
,”
J. Orthop. Sci.
,
13
(
4
), pp.
348
353
.
14.
Inoue
,
A.
,
Chosa
,
E.
,
Goto
,
K.
, and
Tajima
,
N.
,
2013
, “
Nonlinear Stress Analysis of the Supraspinatus Tendon Using Three-Dimensional Finite Element Analysis
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
21
(
5
), pp.
1151
1157
.
15.
Mantovani
,
M.
,
Pellegrini
,
A.
,
Garofalo
,
P.
, and
Baudi
,
P.
,
2015
, “
A 3D Finite Element Model for Geometrical and Mechanical Comparison of Different Supraspinatus Repair Techniques
,”
J. Shoulder Elbow Surg.
,
25
(4), pp.
557
563
.
16.
Debski
,
R. E.
,
Weiss
,
J. A.
,
Newman
,
W. J.
,
Moore
,
S. M.
, and
McMahon
,
P. J.
,
2005
, “
Stress and Strain in the Anterior Band of the Inferior Glenohumeral Ligament During a Simulated Clinical Examination
,”
J. Shoulder Elbow Surg.
,
14
(
1 Suppl. S
), pp.
24S
31S
.
17.
Ellis
,
B. J.
,
Lujan
,
T. J.
,
Dalton
,
M. S.
, and
Weiss
,
J. A.
,
2006
, “
Medial Collateral Ligament Insertion Site and Contact Forces in the ACL-Deficient Knee
,”
J. Orthop. Res.
,
24
(
4
), pp.
800
810
.
18.
Wagner
,
D. R.
, and
Lotz
,
J. C.
,
2004
, “
Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus
,”
J. Orthop. Res.
,
22
(
4
), pp.
901
909
.
19.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2009
, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading
,”
J. Orthop. Res.
,
27
(
12
), pp.
1596
1602
.
20.
Drury
,
N. J.
,
Ellis
,
B. J.
,
Weiss
,
J. A.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
,
2011
, “
Finding Consistent Strain Distributions in the Glenohumeral Capsule Between Two Subjects: Implications for Development of Physical Examinations
,”
J. Biomech.
,
44
(
4
), pp.
607
613
.
21.
Moore
,
S. M.
,
Ellis
,
B.
,
Weiss
,
J. A.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
,
2010
, “
The Glenohumeral Capsule Should Be Evaluated as a Sheet of Fibrous Tissue: A Validated Finite Element Model
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
66
76
.
22.
Araki
,
D.
,
Miller
,
R. M.
,
Fujimaki
,
Y.
,
Hoshino
,
Y.
,
Musahl
,
V.
, and
Debski
,
R. E.
,
2015
, “
Effect of Tear Location on Propagation of Isolated Supraspinatus Tendon Tears During Increasing Levels of Cyclic Loading
,”
J. Bone Jt. Surg. Am.
,
97
(
4
), pp.
273
278
.
23.
Rainis
,
C. A.
,
Brown
,
A. J.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
,
2012
, “
Effects of Simulated Injury on the Anteroinferior Glenohumeral Capsule
,”
Med. Biol. Eng. Comput.
,
50
(
12
), pp.
1299
1307
.
24.
Hughes
,
R. E.
, and
An
,
K. N.
,
1996
, “
Force Analysis of Rotator Cuff Muscles
,”
Clin. Orthop. Relat. Res.
,
330
(
330
), pp.
75
83
.
25.
Reinold
,
M. M.
,
Escamilla
,
R. F.
, and
Wilk
,
K. E.
,
2009
, “
Current Concepts in the Scientific and Clinical Rationale Behind Exercises for Glenohumeral and Scapulothoracic Musculature
,”
J. Orthop. Sports Phys. Ther.
,
39
(
2
), pp.
105
117
.
26.
Payne
,
L. Z.
,
Altchek
,
D. W.
,
Craig
,
E. V.
, and
Warren
,
R. F.
,
1997
, “
Arthroscopic Treatment of Partial Rotator Cuff Tears in Young Athletes. A Preliminary Report
,”
Am. J. Sports Med.
,
25
(
3
), pp.
299
305
.
27.
Sakurai
,
G.
,
Ozaki
,
J.
,
Tomita
,
Y.
,
Kondo
,
T.
, and
Tamai
,
S.
,
1998
, “
Incomplete Tears of the Subscapularis Tendon Associated With Tears of the Supraspinatus Tendon: Cadaveric and Clinical Studies
,”
J. Shoulder Elbow Surg.
,
7
(
5
), pp.
510
515
.
28.
Kim
,
T. K.
,
Rauh
,
P. B.
, and
McFarland
,
E. G.
,
2003
, “
Partial Tears of the Subscapularis Tendon Found During Arthroscopic Procedures on the Shoulder: A Statistical Analysis of Sixty Cases
,”
Am. J. Sports Med.
,
31
(
5
), pp.
744
750
.
29.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.
30.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
(
1–2
), pp.
107
128
.
31.
Ellis
,
B. J.
,
Drury
,
N. J.
,
Moore
,
S. M.
,
McMahon
,
P. J.
,
Weiss
,
J. A.
, and
Debski
,
R. E.
,
2010
, “
Finite Element Modelling of the Glenohumeral Capsule Can Help Assess the Tested Region During a Clinical Exam
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
413
418
.
32.
Moore
,
S. M.
,
Stehle
,
J. H.
,
Rainis
,
E. J.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
,
2008
, “
The Current Anatomical Description of the Inferior Glenohumeral Ligament Does Not Correlate With Its Functional Role in Positions of External Rotation
,”
J. Orthop. Res.
,
26
(
12
), pp.
1598
1604
.
33.
Burkhart
,
S. S.
,
Esch
,
J. C.
, and
Jolson
,
R. S.
,
1993
, “
The Rotator Crescent and Rotator Cable: An Anatomic Description of the Shoulder's ‘Suspension Bridge
,’”
Arthroscopy
,
9
(
6
), pp.
611
616
.
34.
Itoi
,
E.
,
Berglund
,
L. J.
,
Grabowski
,
J. J.
,
Schultz
,
F. M.
,
Growney
,
E. S.
,
Morrey
,
B. F.
, and
An
,
K. N.
,
1995
, “
Tensile Properties of the Supraspinatus Tendon
,”
J. Orthop. Res.
,
13
(
4
), pp.
578
584
.
You do not currently have access to this content.