Mechanical stability analysis is instructive in explaining biological processes like morphogenesis, organogenesis, and pathogenesis of soft tissues. Consideration of the layered, residually stressed structure of tissues, requires accounting for the joint effects of interface conditions and layer incompatibility. This paper is concerned with the influence of imposed rate (incremental) interface conditions (RICs) on critical loads in soft tissues, within the context of linear bifurcation analysis. Aiming at simplicity, we analyze a model of bilayered isotropic hyperelastic (neo-Hookean) spherical shells with residual stresses generated by “shrink-fitting” two perfectly bonded layers with radial interfacial incompatibility. This setting allows a comparison between available, seemingly equivalent, interface conditions commonly used in the literature of layered media stability. We analytically determine the circumstances under which the interface conditions are equivalent or not, and numerically demonstrate significant differences between interface conditions with increasing level of layer incompatibility. Differences of more than tenfold in buckling and 30% in inflation instability critical loads are recorded using the different RICs. Contrasting instability characteristics are also revealed using the different RICs in the presence of incompatibility: inflation instability can occur before pressure maximum, and spontaneous instability may be excluded for thin shells. These findings are relevant to the growing body of stability studies of layered and residually stressed tissues. The impact of interface conditions on critical thresholds is significant in studies that use concepts of instability to draw conclusions about the normal development and the pathologies of tissues like arteries, esophagus, airways, and the brain.

References

References
1.
Richman
,
D. P.
,
Stewart
,
R. M.
,
Hutchinson
,
J. W.
, and
Caviness
,
V. S.
,
1975
, “
Mechanical Model of Brain Convolutional Development
,”
Science
,
189
(
4196
), pp.
18
21
.
2.
Budday
,
S.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2014
, “
The Role of Mechanics During Brain Development
,”
J. Mech. Phys. Solids
,
72
, pp.
75
92
.
3.
Tallinen
,
T.
,
Chung
,
J. Y.
,
Rousseau
,
F.
,
Girard
,
N.
,
Lefèvre
,
J.
, and
Mahadevan
,
L.
,
2016
, “
On the Growth and Form of Cortical Convolutions
,”
Nat. Phys.
,
12
(
6
), pp.
588
593
.
4.
Savin
,
T.
,
Kurpios
,
N. A.
,
Shyer
,
A. E.
,
Florescu
,
P.
,
Liang
,
H.
,
Mahadevan
,
L.
, and
Tabin
,
C. J.
,
2011
, “
On the Growth and Form of the Gut
,”
Nature
,
476
(
7358
), pp.
57
62
.
5.
Shyer
,
A. E.
,
Tallinen
,
T.
,
Nerurkar
,
N. L.
,
Wei
,
Z.
,
Gil
,
E. S.
,
Kaplan
,
D. L.
,
Tabin
,
C. J.
, and
Mahadevan
,
L.
,
2013
, “
Villification: How the Gut Gets Its Villi
,”
Science
,
342
(
6155
), pp.
212
218
.
6.
Balbi
,
V.
,
Kuhl
,
E.
, and
Ciarletta
,
P.
,
2015
, “
Morphoelastic Control of Gastro-Intestinal Organogenesis: Theoretical Predictions and Numerical Insights
,”
J. Mech. Phys. Solids
,
78
, pp.
493
510
.
7.
Budday
,
S.
,
Raybaud
,
C.
, and
Kuhl
,
E.
,
2014
, “
A Mechanical Model Predicts Morphological Abnormalities in the Developing Human Brain
,”
Sci. Rep.
,
4
, p.
5644
.
8.
Xiao
,
Y.
,
Hayman
,
D.
,
Khalafvand
,
S. S.
,
Lindsey
,
M. L.
, and
Han
,
H.-C.
,
2014
, “
Artery Buckling Stimulates Cell Proliferation and NF-κB Signaling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
307
(
4
), pp.
H542
H551
.
9.
Lee
,
A. Y.
,
Sanyal
,
A.
,
Xiao
,
Y.
,
Shadfan
,
R.
, and
Han
,
H.-C.
,
2014
, “
Mechanical Instability of Normal and Aneurysmal Arteries
,”
J. Biomech.
,
47
(
16
), pp.
3868
3875
.
10.
Chesnutt
,
J. K. W.
, and
Han
,
H.-C.
,
2011
, “
Tortuosity Triggers Platelet Activation and Thrombus Formation in Microvessels
,”
ASME J. Biomech. Eng.
,
133
(
12
), p.
121004
.
11.
Jackson
,
Z. S.
,
Dajnowiec
,
D.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
,
2005
, “
Partial Off-Loading of Longitudinal Tension Induces Arterial Tortuosity
,”
Arterioscler., Thromb., Vasc. Biol.
,
25
(
5
), pp.
957
962
.
12.
Goriely
,
A.
, and
Vandiver
,
R.
,
2010
, “
On the Mechanical Stability of Growing Arteries
,”
IMA J. Appl. Math.
,
75
(
4
), pp.
549
570
.
13.
Vandiver
,
R. M.
,
2015
, “
Buckling Instability in Arteries
,”
J. Theor. Biol.
,
371
, pp.
1
8
.
14.
Mottahedi
,
M.
, and
Han
,
H.-C.
,
2016
, “
Artery Buckling Analysis Using a Two-Layered Wall Model With Collagen Dispersion
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
515
524
.
15.
Wiggs
,
B. R.
,
Hrousis
,
C. A.
,
Drazen
,
J. M.
, and
Kamm
,
R. D.
,
1997
, “
On the Mechanism of Mucosal Folding in Normal and Asthmatic Airways
,”
J. Appl. Physiol.
,
83
(
6
), pp.
1814
1821
.
16.
Moulton
,
D. E.
, and
Goriely
,
A.
,
2011
, “
Possible Role of Differential Growth in Airway Wall Remodeling in Asthma
,”
J. Appl. Physiol.
,
110
(
4
), pp.
1003
1012
.
17.
Eskandari
,
M.
,
Javili
,
A.
, and
Kuhl
,
E.
,
2016
, “
Elastosis During Airway Wall Remodeling Explains Multiple Co-Existing Instability Patterns
,”
J. Theor. Biol.
,
403
, pp.
209
218
.
18.
Yang
,
W.
,
Fung
,
T. C.
,
Chian
,
K. S.
, and
Chong
,
C. K.
,
2007
, “
Instability of the Two-Layered Thick-Walled Esophageal Model Under the External Pressure and Circular Outer Boundary Condition
,”
J. Biomech.
,
40
(
3
), pp.
481
490
.
19.
Li
,
B.
,
Cao
,
Y.-P.
, and
Feng
,
X.-Q.
,
2011
, “
Growth and Surface Folding of Esophageal Mucosa: A Biomechanical Model
,”
J. Biomech.
,
44
(
1
), pp.
182
188
.
20.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
21.
Lu
,
X.
, and
Gregersen
,
H.
,
2001
, “
Regional Distribution of Axial Strain and Circumferential Residual Strain in the Layered Rabbit Oesophagus
,”
J. Biomech.
,
34
(
2
), pp.
225
233
.
22.
Eskandari
,
M.
,
Pfaller
,
M.
,
Kuhl
,
E.
,
Eskandari
,
M.
,
Pfaller
,
M. R.
, and
Kuhl
,
E.
,
2013
, “
On the Role of Mechanics in Chronic Lung Disease
,”
Materials
,
6
(
12
), pp.
5639
5658
.
23.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1986
, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
189
192
.
24.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1991
, “
Residual Strains in Porcine and Canine Trachea
,”
J. Biomech.
,
24
(
5
), pp.
307
315
.
25.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.
26.
Ben Amar
,
M.
, and
Goriely
,
A.
,
2005
, “
Growth and Instability in Elastic Tissues
,”
J. Mech. Phys. Solids
,
53
(
10
), pp.
2284
2319
.
27.
Berry
,
J. L.
,
Rachev
,
A.
,
Moore
,
J. E.
, and
Meister
,
J.
,
1992
, “
Analysis of the Effects of a Non-Circular Two Layer Stress-Free State on Arterial Wall Stresses
,”
14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Paris, France, Oct., pp.
65
66
.
28.
Greenwald
,
S. E.
,
Moore
,
J. E.
,
Jr.
,
Rachev
,
A.
,
Kane
,
T. P. C.
, and
Meister
,
J.-J.
,
1997
, “
Experimental Investigation of the Distribution of Residual Strains in the Artery Wall
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
438
444
.
29.
Bigoni
,
D.
, and
Gei
,
M.
,
2001
, “
Bifurcations of a Coated, Elastic Cylinder
,”
Int. J. Solids Struct.
,
38
(
30–31
), pp.
5117
5148
.
30.
Lu
,
X.
,
Yang
,
J.
,
Zhao
,
J. B.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
,
2003
, “
Shear Modulus of Porcine Coronary Artery: Contributions of Media and Adventitia
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
(
5
), pp.
H1966
H1975
.
31.
Liao
,
D.
,
Fan
,
Y.
,
Zeng
,
Y.
, and
Gregersen
,
H.
,
2003
, “
Stress Distribution in the Layered Wall of the Rat Oesophagus
,”
Med. Eng. Phys.
,
25
, pp.
731
738
.
32.
Zhao
,
J.
,
Chen
,
X.
,
Yang
,
J.
,
Liao
,
D.
, and
Gregersen
,
H.
,
2007
, “
Opening Angle and Residual Strain in a Three-Layered Model of Pig Oesophagus
,”
J. Biomech.
,
40
(
14
), pp.
3187
3192
.
33.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
Modelling the Layer-Specific Three-Dimensional Residual Stresses in Arteries, With an Application to the Human Aorta
,”
J. R. Soc. Interface
,
7
(
46
), pp.
787
799
.
34.
Takamizawa
,
K.
, and
Nakayama
,
Y.
,
2013
, “
Stress Distribution in a Bilayer Elastic Model of a Coronary Artery
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041006
.
35.
Sokolis
,
D. P.
,
2010
, “
Strain-Energy Function and Three-Dimensional Stress Distribution in Esophageal Biomechanics
,”
J. Biomech.
,
43
(
14
), pp.
2753
2764
.
36.
Jahed
,
H.
,
Farshi
,
B.
, and
Karimi
,
M.
,
2006
, “
Optimum Autofrettage and Shrink-Fit Combination in Multi-Layer Cylinders
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), p.
196
.
37.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Study on Enhancing the Performance of Thermally Autofrettaged Cylinder Through Shrink-Fitting
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
094501
.
38.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Dover Publications
,
Mineola, NY
.
39.
deBotton
,
G.
,
Bustamante
,
R.
, and
Dorfmann
,
A.
,
2013
, “
Axisymmetric Bifurcations of Thick Spherical Shells Under Inflation and Compression
,”
Int. J. Solids Struct.
,
50
(
2
), pp.
403
413
.
40.
Emuna
,
N.
, and
Durban
,
D.
,
2018
, “
On Rate Boundary Conditions for Soft Tissues Bifurcation Analysis
,”
ASME J. Biomech. Eng.
,
140
(
12
), p.
121010
.
41.
Hollander
,
Y.
, and
Durban
,
D.
,
2009
, “
Bifurcation Phenomena of a Biphasic Compressible Hyperelastic Spherical Continuum
,”
Int. J. Solids Struct.
,
46
(
24
), pp.
4252
4259
.
42.
Goriely
,
A.
,
Destrade
,
M.
, and
Amar
,
M. B.
,
2006
, “
Instabilities in Elastomers and in Soft Tissues
,”
Q. J. Mech. Appl. Math.
,
59
, pp.
615
630
.
43.
Haughton
,
D. M.
, and
Ogden
,
R. W.
,
1978
, “
On the Incremental Equations in Non-Linear elasticity—II: Bifurcation of Pressurized Spherical Shells
,”
J. Mech. Phys. Solids
,
26
(
2
), pp.
111
138
.
44.
Haughton
,
D. M.
, and
Ogden
,
R. W.
,
1979
, “
Bifurcation of Inflated Circular Cylinders of Elastic Material Under Axial loading—II: Exact Theory for Thick-Walled Tubes
,”
J. Mech. Phys. Solids
,
27
(
5–6
), pp.
489
512
.
45.
Fu
,
Y. B.
,
Liu
,
J. L.
, and
Francisco
,
G. S.
,
2016
, “
Localized Bulging in an Inflated Cylindrical Tube of Arbitrary Thickness - the Effect of Bending Stiffness
,”
J. Mech. Phys. Solids
,
90
, pp.
45
60
.
46.
Evirgen
,
H.
, and
Ertepinar
,
A.
,
1989
, “
Stability and Vibrations of Layered Spherical Shells Made of Hyperelastic Materials
,”
Int. J. Eng. Sci.
,
27
(
6
), pp.
623
632
.
47.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1/3
), pp.
1
48
.
48.
Kamenskiy
,
A.
,
Seas
,
A.
,
Bowen
,
G.
,
Deegan
,
P.
,
Desyatova
,
A.
,
Bohlim
,
N.
,
Poulson
,
W.
, and
MacTaggart
,
J.
,
2016
, “
In Situ Longitudinal Pre-Stretch in the Human Femoropopliteal Artery
,”
Acta Biomater.
,
32
, pp.
231
237
.
49.
O'Rourke
,
M. F.
, and
Hashimoto
,
J.
,
2007
, “
Mechanical Factors in Arterial Aging: A Clinical Perspective
,”
J. Am. Coll. Cardiol.
,
50
, pp.
1
13
.
50.
Merodio
,
J.
, and
Haughton
,
D. M.
,
2010
, “
Bifurcation of Thick-Walled Cylindrical Shells and the Mechanical Response of Arterial Tissue Affected by Marfan's Syndrome
,”
Mech. Res. Commun.
,
37
(
1
), pp.
1
6
.
51.
Demirkoparan
,
H.
, and
Merodio
,
J.
,
2017
, “
Bulging Bifurcation of Inflated Circular Cylinders of Doubly Fiber-Reinforced Hyperelastic Material Under Axial Loading and Swelling
,”
Math. Mech. Solids
,
22
(
4
), pp.
666
682
.
52.
Armon
,
S.
,
Efrati
,
E.
,
Kupferman
,
R.
, and
Sharon
,
E.
,
2011
, “
Geometry and Mechanics in the Opening of Chiral Seed Pods
,”
Science
,
333
(
6050
), pp.
1726
1730
.
53.
Pezzulla
,
M.
,
Smith
,
G. P.
,
Nardinocchi
,
P.
, and
Holmes
,
D. P.
,
2016
, “
Geometry and Mechanics of Thin Growing Bilayers
,”
Soft Matter
,
12
(
19
), pp.
4435
4442
.
54.
Pezzulla
,
M.
,
Stoop
,
N.
,
Jiang
,
X.
, and
Holmes
,
D. P.
,
2017
, “
Curvature-Driven Morphing of Non-Euclidean Shells
,”
Proc. R. Soc. A
,
473
(
2201
), p.
20170087
.
55.
Pezzulla
,
M.
,
Stoop
,
N.
,
Steranka
,
M. P.
,
Bade
,
A. J.
, and
Holmes
,
D. P.
,
2018
, “
Curvature-Induced Instabilities of Shells
,”
Phys. Rev. Lett.
,
120
, p.
048002
.
56.
Kebadze
,
E.
,
Guest
,
S. D.
, and
Pellegrino
,
S.
,
2004
, “
Bistable Prestressed Shell Structures
,”
Int. J. Solids Struct.
,
41
(
11–12
), pp.
2801
2820
.
57.
Gregersen
,
H.
,
Kassab
,
G.
, and
Fung
,
Y.
,
2000
, “
The Zero-Stress State of the Gastrointestinal Tract
,”
Dig. Dis. Sci.
,
45
(
12
), pp.
2271
2281
.
58.
Li
,
B.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2011
, “
Surface Wrinkling of Mucosa Induced by Volumetric Growth: Theory, Simulation and Experiment
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
758
774
.
59.
Budday
,
S.
,
Andres
,
S.
,
Walter
,
B.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2017
, “
Wrinkling Instabilities in Soft Bilayered Systems
,”
Philos. Trans. R. Soc., A
,
375
(
2093
), p.
20160163
.
60.
Destrade
,
M.
,
Lusetti
,
I.
,
Mangan
,
R.
, and
Sigaeva
,
T.
,
2017
, “
Wrinkles in the Opening Angle Method
,”
Int. J. Solids Struct.
,
122–123
, pp.
189
195
.
61.
Pezzulla
,
M.
,
Shillig
,
S. A.
,
Nardinocchi
,
P.
, and
Holmes
,
D. P.
,
2015
, “
Morphing of Geometric Composites Via Residual Swelling
,”
Soft Matter
,
11
(
29
), pp.
5812
5820
.
62.
Napoli
,
G.
, and
Goriely
,
A.
,
2017
, “
A Tale of Two Nested Elastic Rings
,”
Proc. R. Soc. A
,
473
(
2204
), p.
20170340
.
You do not currently have access to this content.