The arteriovenous fistula (AVF) is the main form of vascular access for hemodialysis patients, but its maintenance is very challenging. Its failure is mainly related to intimal hyperplasia (IH), leading to stenosis. The aim of this work was twofold: (i) to perform a computational study for the comparison of the disturbed blood dynamics in different configurations of AVF and (ii) to assess the amount of transition to turbulence developed by the specific geometric configuration of AVF. For this aim, we reconstructed realistic three-dimensional (3D) geometries of two patients with a side-to-end AVF, performing a parametric study by changing the angle of incidence at the anastomosis. We solved the incompressible Navier–Stokes equations modeling the blood as an incompressible and Newtonian fluid. Large eddy simulations (LES) were considered to capture the transition to turbulence developed at the anastomosis. The values of prescribed boundary conditions are obtained from clinical echo-color Doppler (ECD) measurements. To assess the disturbed flow, we considered hemodynamic quantities such as the velocity field, the pressure distribution, and wall shear stresses (WSS) derived quantities, whereas to quantify the transition to turbulence, we computed the standard deviation of the velocity field among different heartbeats and the turbulent kinetic energy.

References

References
1.
Brescia
,
M.
,
Cimino
,
J.
,
Appel
,
K.
, and
Hurwich
,
B. J.
,
1966
, “
Chronic Hemodialysis Using Venipuncture and a Surgically Created Arteriovenous Fistula
,”
New Engl. J. Med.
,
275
(
20
), pp.
1089
1092
.
2.
Leermakers
,
J.
,
Bode
,
A.
,
Vaidya
,
A.
,
van der Sande
,
F.
,
Evers
,
S.
, and
Tordoir
,
J.
,
2013
, “
Cost-Effectiveness of Vascular Access for Haemodialysis: Arteriovenous Fistulas Versus Arteriovenous Grafts
,”
J. Vasc. Surg.
,
57
(
1
), p.
286
.
3.
Vascular-Access-Work-Group
,
2006
, “
Clinical Practice Guidelines for Vascular Access
,”
Am. J. Kidney Dis.
,
48
, pp.
S176
S247
.
4.
Allon
,
M.
, and
Robbin
,
M.
,
2002
, “
Increasing Arteriovenous Fistulas in Hemodialysis Patients: Problems and Solutions
,”
Kidney Int.
,
62
(
4
), pp.
1109
1124
.
5.
Sho
,
E.
,
Nanjo
,
H.
,
Sho
,
M.
,
Kobayashi
,
M.
,
Komatsu
,
M.
,
Kawamura
,
K.
,
Xu
,
C.
,
Zarins
,
C.
, and
Masuda
,
H.
,
2004
, “
Arterial Enlargement, Tortuosity, and Intimal Thickening in Response to Sequential Exposure to High and Low Wall Shear Stress
,”
J. Vasc. Surg.
,
39
(
3
), pp.
601
612
.
6.
Patel
,
S.
,
Hughes
,
J.
, and
Mills
,
J.
,
2003
, “
Failure of Arteriovenous Fistula Maturation: An Unintended Consequence of Exceeding Dialysis Outcome Quality Initiative Guidelines for Hemodialysis Access
,”
J. Vasc. Surg.
,
38
(
3
), pp.
439
445
.
7.
Kalman
,
P.
,
Pope
,
M.
,
Bhola
,
C.
,
Richardson
,
R.
, and
Sniderman
,
K.
,
1999
, “
A Practical Approach to Vascular Access for Hemodialysis and Predictors of Success
,”
J. Vasc. Surg.
,
30
(
4
), pp.
727
733
.
8.
Ernandez
,
T.
,
Saudan
,
P.
,
Berney
,
T.
,
Merminod
,
T.
,
Bednarkiewicz
,
M.
, and
Martin
,
P.-Y.
,
2005
, “
Risk Factors for Early Failure of Native Arteriovenous Fistulas
,”
Nephron Clin. Pract.
,
101
(
1
), pp.
c39
c44
.
9.
Lok
,
C. E.
,
Allon
,
M.
,
Moist
,
L.
,
Oliver
,
M. J.
,
Shah
,
H.
, and
Zimmerman
,
D.
,
2006
, “
Risk Equation Determining Unsuccessful Cannulation Events and Failure to Maturation in Arteriovenous Fistulas
,”
J. Am. Soc. Nephrol.
,
17
(
11
), pp.
3204
3212
.
10.
Jennings
,
W.
,
Kindred
,
M.
, and
Broughan
,
T.
,
2009
, “
Creating Radiocephalic Arteriovenous Fistulas: Technical and Functional Success
,”
J. Am. Coll. Surg.
,
208
(
3
), pp.
419
425
.
11.
Mendelssohn
,
D.
,
Ethier
,
J.
,
Elder
,
S.
,
Saran
,
R.
,
Port
,
F.
, and
Pisoni
,
R.
,
2006
, “
Haemodialysis Vascular Access Problems in Canada: Results From the Dialysis Outcomes and Practice Patterns Study
,”
Nephrol. Dial. Transplant.
,
21
(
3
), pp.
721
728
.
12.
Hofstra
,
L.
,
Bergmans
,
D.
,
Leunissen
,
K.
,
Hoeks
,
A.
,
Kitslaar
,
P.
, and
Tordoir
,
J.
,
1996
, “
Prosthetic Arteriovenous Fistulas and Venous Anastomotic Stenosis: Influence of a High Flow Velocity on the Development of Intimal Hyperplasia
,”
Blood Purif.
,
14
(
5
), pp.
345
349
.
13.
Lemson
,
M. S.
,
Tordoir
,
J. H.
,
Daemen
,
M. J.
, and
Kitslaar
,
P. J.
,
2000
, “
Intimal Hyperplasia in Vascular Grafts
,”
Eur. J. Vasc. Endovasc. Surg.
,
19
(
4
), pp.
336
350
.
14.
Corpataux
,
J.
,
2002
, “
Low-Pressure Environment and Remodelling of the Forearm Vein in Brescia-Cimino Haemodialysis Access
,”
Nephrol. Dial. Transplant.
,
17
(
6
), pp.
1057
1062
.
15.
He
,
Y.
,
Terry
,
C.
,
Nguyen
,
C.
,
Berceli
,
S.
,
Shiu
,
Y.
, and
Cheung
,
A.
,
2013
, “
Serial Analysis of Lumen Geometry and Hemodynamics in Human Arteriovenous Fistula for Hemodialysis Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
J. Biomech.
,
46
(
1
), pp.
165
169
.
16.
Ku
,
D.
,
Giddens
,
D.
,
Zarins
,
C.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Aeterioscler., Thromb., Vasc. Biol.
,
5
(
3
), pp.
293
302
.https://www.ncbi.nlm.nih.gov/pubmed/?term=Pulsatile+Flow+and+Ath-+erosclerosis+in+the+Human+Carotid+Bifurcation.+Positive+Correlation+Between+Plaque+Location+and+Low+Oscillating+Shear+Stress
17.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.
18.
Ene-Iordache
,
B.
,
Mosconi
,
L.
,
Remuzzi
,
G.
, and
Remuzzi
,
A.
,
2001
, “
Computational Fluid Dynamics of a Vascular Access Case for Hemodialysis
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
284
292.
19.
Kharboutly
,
Z.
,
Fenech
,
M.
,
Treutenaere
,
J.
,
Claude
,
I.
, and
Legallais
,
C.
,
2007
, “
Investigations Into the Relationship Between Hemodynamics and Vascular Alterations in an Established Arteriovenous Fistula
,”
Medical Eng. Phys.
,
29
(
9
), pp.
999
1007
.
20.
Canneyt
,
K. V.
,
Pourchez
,
T.
,
Eloot
,
S.
,
Guillame
,
C.
,
Bonnet
,
A.
,
Segers
,
P.
, and
Verdonck
,
P.
,
2010
, “
Hemodynamic Impact of Anastomosis Size and Angle in Side-to-End Arteriovenous Fistulae: A Computer Analysis
,”
J. Vasc. Access
,
11
(
1
), pp.
52
58
.
21.
Davies
,
P.
,
2009
, “
Hemodynamic Shear Stress and the Endothelium in Cardiovascular Pathophysiology
,”
Nat. Clin. Pract. Cardiovasc. Med.
,
6
(
1
), pp.
16
26
.
22.
Konner
,
K.
,
Nonnast-Daniel
,
B.
, and
Ritz
,
E.
,
2003
, “
The Arteriovenous Fistula
,”
J. Am. Soc. Nephrol.
,
14
(
6
), pp.
1669
1680
.
23.
Lee
,
S.
,
Antiga
,
L.
, and
Steinman
,
D.
,
2009
, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061013
.
24.
Ayachit
,
U.
,
2015
, “
The Paraview Guide: A Parallel Visualization Application
,” Kitware, Clifton Park, NY, www.paraview.org
25.
Izzo, R., Steinman, D., Manini, S., and Antiga, L.,
2018
, “
The Vascular Modeling Toolkit: A Python Library for the Analysis of Tubular Structures in Medical Images
,”
J. Open Source Software
,
3
(25), p. 745.
26.
Formaggia
,
L.
,
Quarteroni
,
A.
, and
Veneziani
,
A.
, eds.,
2009
,
Cardiovascular Mathematics
,
Springer
,
Milan, Italy
.
27.
Nicoud
,
F.
,
Toda
,
H.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.
28.
Lancellotti
,
R.
,
Vergara
,
C.
,
Valdettaro
,
L.
,
Bose
,
S.
, and
Quarteroni
,
A.
,
2017
, “
Large Eddy Simulations for Blood Dynamics in Realistic Stenotic Carotids
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
11
), p.
e2868
.
29.
Vergara
,
C.
,
Van
,
D. L.
,
Quadrio
,
M.
,
Formaggia
,
L.
, and
Domanin
,
M.
,
2017
, “
Large Eddy Simulations of Blood Dynamics in Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
,
47
, pp.
38
46
.
30.
Rogallo
,
R. S.
, and
Moin
,
P.
,
1984
, “
Numerical Simulation of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
16
(
1
), pp.
99
137
.
31.
Ene-Iordache
,
B.
, and
Remuzzi
,
A.
,
2012
, “
Disturbed Flow in Radial-Cephalic Arteriovenous Fistulae for Haemodialysis: Low and Oscillating Shear Stress Locates the Sites of Stenosis
,”
Nephrol. Dial. Transplant.
,
27
(
1
), pp.
358
368
.
32.
Stehbens
,
W.
,
1959
, “
Turbulence of Blood Flow
,”
Q. J. Exp. Physiol. Cognate Med. Sci.
,
44
(
1
), pp.
110
117
.
33.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
34.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
35.
Deardorff
,
J.
,
1970
, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers
,”
J. Fluid Mech.
,
41
(
2
), pp.
453
480
.
36.
Hairer
,
E.
, and
Wanner
,
G.
,
1991
,
Solving Ordinary Differential Equations II
,
Springer
,
Berlin
.
37.
Quarteroni
,
A.
, and
Valli
,
A.
,
1994
,
Numerical Approximation of Partial Different Equations
, Vol.
23
,
Springer
, Berlin.
38.
Tezduyar
,
T.
,
1991
, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Advances in Applied Mechanics
,
Elsevier
, Amsterdam, The Netherlands, pp.
1
44
.
39.
Sturm
,
M.
,
Lee
,
H.
,
Thomas
,
S.
, and
Barber
,
T.
,
2017
, “
The Haemodynamic Effect of an Adjustable Band in an Arteriovenous Fistula
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
9
), pp.
949
957
.
40.
Broderick
,
S.
,
Houston
,
J.
, and
Walsh
,
M.
,
2015
, “
The Influence of the Instabilities in Modelling Arteriovenous Junction Haemodynamics
,”
J. Biomech.
,
48
(
13
), pp.
3591
3598
.
41.
Ene-Iordache
,
B.
,
Semperboni
,
C.
,
Dubini
,
G.
, and
Remuzzi
,
A.
,
2015
, “
Disturbed Flow in a Patient-Specific Arteriovenous Fistula for Hemodialysis: Multidirectional and Reciprocating Near-Wall Flow Patterns
,”
J. Biomech.
,
48
(
10
), pp.
2195
2200
.
42.
Browne
,
L.
,
Griffin
,
P.
,
Bashar
,
K.
,
Walsh
,
S.
,
Kavanagh
,
E.
, and
Walsh
,
M.
,
2015
, “
In Vivo Validation of the in Silico Predicted Pressure Drop Across an Arteriovenous Fistula
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1275
1286
.
43.
Colley
,
E.
,
Carroll
,
J.
,
Thomas
,
S.
,
Simmons
,
A.
, and
Barber
,
T.
,
2016
, “
Development of a Patient-Specific FSI Model of an Arteriovenous Fistula
,”
20th Australasian Fluid Mechanics Conference
, Perth, Australia, Dec. 5–8.https://pdfs.semanticscholar.org/bcaf/5b16d2a08530572d4a41c8ba3ae42e023b43.pdf
44.
Bozzetto
,
M.
,
Ene-Iordache
,
B.
, and
Remuzzi
,
A.
,
2016
, “
Transitional Flow in the Venous Side of Patient-Specific Arteriovenous Fistulae for Hemodialysis
,”
Ann. Biomed. Eng.
,
44
(
8
), pp.
2388
2401
.
45.
Akherat
,
S. J. M.
,
Cassel
,
K.
,
Boghosian
,
M.
,
Dhar
,
P.
, and
Hammes
,
M.
,
2017
, “
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
,”
ASME J. Biomech. Eng.
,
139
(
4
), p.
044504
.
46.
de Villiers
,
A.
,
McBride
,
A.
,
Reddy
,
B.
,
Franz
,
T.
, and
Spottiswoode
,
B.
,
2018
, “
A Validated Patient-Specific FSI Model for Vascular Access in Haemodialysis
,”
Biomech. Model. Mechanobiol.
,
17
(
2
), pp.
479
497
.
47.
Decorato
,
I.
,
Kharboutly
,
Z.
,
Legallais
,
C.
, and
Salsac
,
A.
,
2011
, “
Numerical Study of the Influence of Wall Compliance on the Haemodynamics in a Patient-Specific Arteriovenous Fistula
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
Suppl. 1
), pp.
121
123
.
48.
Duque
,
J.
,
Tabbara
,
M.
,
Martinez
,
L.
,
Cardona
,
J.
,
Vazquez-Padron
,
R.
, and
Salman
,
L.
,
2017
, “
Dialysis Arteriovenous Fistula Failure and Angioplasty: Intimal Hyperplasia and Other Causes of Access Failure
,”
Am. J. Kidney Dis.
,
69
(
1
), pp.
147
151
.
49.
Brahmbhatt
,
A.
,
Remuzzi
,
A.
,
Franzoni
,
M.
, and
Misra
,
S.
,
2016
, “
The Molecular Mechanisms of Hemodialysis Vascular Access Failure
,”
Kidney Int.
,
89
(
2
), pp.
303
316
.
50.
Haruguchi
,
H.
, and
Teraoka
,
S.
,
2003
, “
Intimal Hyperplasia and Hemodynamic Factors in Arterial Bypass and Arteriovenous Grafts: A Review
,”
J. Artif. Organs
,
6
(
4
), pp.
227
235
.
51.
Soulis
,
J.
,
Lampri
,
O.
,
Fytanidis
,
D.
, and
Giannoglou
,
G.
,
2011
, “
Relative Residence Time and Oscillatory Shear Index of Non-Newtonian Flow Models in Aorta
,”
IEEE
Tenth International Workshop on Biomedical Engineering
, Kos Island, Greece, Oct. 5–7, pp. 1–4.
52.
Bassiouny
,
H. S.
,
White
,
S.
,
Glagov
,
S.
,
Choi
,
E.
,
Giddens
,
D.
, and
Zarins
,
C.
,
1992
, “
Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced
,”
J. Vasc. Surg.
,
15
(
4
), pp.
708
717
.
53.
Les
,
A.
,
Shadden
,
S.
,
Figueroa
,
C.
,
Park
,
J.
,
Tedesco
,
M.
,
Herfkens
,
R.
,
Dalman
,
R.
, and
Taylor
,
C.
,
2010
, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.
54.
Stolic
,
R.
,
Mijailovic
,
M.
,
Cvetkovic
,
A.
,
Stanojevic
,
M.
,
Stolic
,
D.
, and
Cvetkovic
,
D.
,
2012
, “
Distal Ischemia Induced by Vascular Access for Hemodialysis—A Case Report
,”
Hippokratia
,
16
(
4
), pp.
375
377
.https://www.ncbi.nlm.nih.gov/pubmed/?term=Distal+Ischemia+Induced+by+Vascular+Access+for+Hemodialysis%E2%80%94A+Case+Report
55.
Badero
,
O.
,
Salifu
,
M.
,
Wasse
,
H.
, and
Work
,
J.
,
2008
, “
Frequency of Swing-Segment Stenosis in Referred Dialysis Patients With Angiographically Documented Lesions
,”
Am. J. Kidney Dis.
,
51
(
1
), pp.
93
98
.
56.
Sivanesan
,
S.
,
1999
, “
Sites of Stenosis in AV Fistulae for Haemodialysis Access
,”
Nephrol. Dial. Transplant.
,
14
(
1
), pp.
118
120
.
57.
Asif
,
A.
,
Gadalean
,
F.
,
Merrill
,
D.
,
Cherla
,
G.
,
Cipleu
,
C.
,
Epstein
,
D.
, and
Roth
,
D.
,
2005
, “
Inflow Stenosis in Arteriovenous Fistulas and Grafts: A Multicenter, Prospective Study
,”
Kidney Int.
,
67
(
5
), pp.
1986
1992
.
58.
Ene-Iordache
,
B.
,
Cattaneo
,
L.
,
Dubini
,
G.
, and
Remuzzi
,
A.
,
2013
, “
Effect of Anastomosis Angle on the Localization of Disturbed Flow in ‘Side-to-End’ Fistulae for Haemodialysis Access
,”
Nephrol. Dial. Transplant.
,
28
(
4
), pp.
997
1005
.
59.
Stehbens
,
W.
,
Liepsch
,
D.
,
Poll
,
A.
, and
Erhardt
,
W.
,
1995
, “
Recording of Unexpectedly High Frequency Vibrations of Blood Vessel Walls in Experimental Arteriovenous Fistulae of Rabbits Using a Laser Vibrometer
,”
Biorheology
,
32
(
6
), pp.
631
641
.https://www.ncbi.nlm.nih.gov/pubmed/?term=Recording+of+Unexpectedly+High+Frequency+Vibrations+of+Blood+Vessel+Walls+in+Experimen-+tal+Arteriovenous+Fistulae+of+Rabbits+Using+a+Laser+Vibrometer
You do not currently have access to this content.