Understanding the pressure distributions at the limb-socket interface is essential to the design and evaluation of prosthetic components for lower limb prosthesis users. Force sensing resistors (FSRs) are employed in prosthetics research to measure pressure at this interface due to their low cost, thin profile, and ease of use. While FSRs are known to be sensitive to many sources of error, few studies have systematically quantified these errors using test conditions relevant to lower limb prosthetics. The purpose of this study was to evaluate FSR accuracy for the measurement of lower limb prosthetics interface pressures. Two FSR models (Flexiforce A201 and Interlink 402) were subjected to a series of prosthetic-relevant tests. These tests included: (1) static compression, (2) cyclic compression, and (3) a combined static and cyclic compression protocol mimicking a variable activity (walk–sit–stand) procedure. Flexiforce sensors outperformed Interlink sensors and were then subjected to two additional tests: (4) static curvature and (5) static shear stress. Results demonstrated that FSRs experienced significant errors in all five tests. We concluded that: (1) if used carefully, FSRs can provide an estimate of prosthetic interface pressure, but these measurements should be interpreted within the expected range of possible measurement error given the setup; (2) FSRs should be calibrated in a setup that closely matches how they will be used for taking measurements; and (3) both Flexiforce and Interlink sensors can be used to estimate interface pressures; however, in most cases Flexiforce sensors are likely to provide more accurate measurements.

References

1.
Dumbleton
,
T.
,
Buis
,
A. W. P.
,
McFadyen
,
A.
,
McHugh
,
B. F.
,
McKay
,
G.
,
Murray
,
K. D.
, and
Sexton
,
S.
,
2009
, “
Dynamic Interface Pressure Distributions of Two Transtibial Prosthetic Socket Concepts
,”
J. Rehabil. Res. Dev.
,
46
(
3
), pp.
405
415
.
2.
Kahle
,
J. T.
, and
Highsmith
,
M. J.
,
2013
, “
Transfemoral Sockets With Vacuum-Assisted Suspension Comparison of Hip Kinematics, Socket Position, Contact Pressure, and Preference: Ischial Containment Versus Brimless
,”
J. Rehabil. Res. Dev.
,
50
(
9
), pp.
1241
1252
.
3.
Gholizadeh
,
H.
,
Osman
,
N. A. A.
,
Eshraghi
,
A.
,
Arifin
,
N.
, and
Chung
,
T. Y.
,
2016
, “
A Comparison of Pressure Distributions Between Two Types of Sockets in a Bulbous Stump
,”
Prosthet. Orthot. Int.
,
40
(
4
), pp.
509
516
.
4.
Sengeh
,
D. M.
, and
Herr
,
H.
,
2013
, “
A Variable-Impedance Prosthetic Socket for a Transtibial Amputee Designed From Magnetic Resonance Imaging Data
,”
J. Prosthet. Orthosis
,
25
(
3
), pp.
129
137
.
5.
Beil
,
T. L.
,
Street
,
G. M.
, and
Covey
,
S. J.
,
2002
, “
Interface Pressures During Ambulation Using Suction and Vacuum-Assisted Prosthetic Sockets
,”
J. Rehabil. Res. Dev.
,
39
(
6
), pp.
693
700
.
6.
Beil
,
T. L.
, and
Street
,
G. M.
,
2004
, “
Comparison of Interface Pressures With Pin and Suction Suspension Systems
,”
J. Rehabil. Res. Dev.
,
41
(
6A
), pp.
821
828
.
7.
Pirouzi
,
G.
,
Osman
,
N. A. A.
,
Oshkour
,
A. A.
,
Ali
,
S.
,
Gholizadeh
,
H.
, and
Abas
,
W. A. B. W.
,
2014
, “
Development of an Air Pneumatic Suspension System for Transtibial Prostheses
,”
Sensors
,
14
(
9
), pp.
16754
16765
.
8.
Razak
,
N. A. A.
,
Osman
,
N. A. A.
,
Gholizadeh
,
H.
, and
Ali
,
S.
,
2014
, “
Biomechanics Principle of Elbow Joint for Transhumeral Prostheses: Comparison of Normal Hand, Body-Powered, Myoelectric & Air Splint Prostheses
,”
Biomed. Eng. Online
,
13
, p.
134
.
9.
Razak
,
N. A. A.
,
Osman
,
N. A. A.
,
Gholizadeh
,
H.
, and
Ali
,
S.
,
2014
, “
Prosthetics Socket That Incorporates an Air Splint System Focusing on Dynamic Interface Pressure
,”
Biomed. Eng. Online
,
13
, p.
108
.
10.
Convery
,
P.
, and
Buis
,
A. W. P.
,
1999
, “
Socket/Stump Interface Dynamic Pressure Distributions Recorded During the Prosthetic Stance Phase of a Trans-Tibial Amputee Wearing a Hydrocast Socket
,”
Prosthet. Orthot. Int.
,
23
(
2
), pp.
107
112
.
11.
Bonnet
,
X.
,
Adde
,
J. N.
,
Blanchard
,
F.
,
Gedouin-Toquet
,
A.
, and
Eveno
,
D.
,
2015
, “
Evaluation of a New Geriatric Foot Versus the Solid Ankle Cushion Heel Foot for Low-Activity Amputees
,”
Prosthet. Orthot. Int.
,
39
(
2
), pp.
112
118
.
12.
Buis
,
A. W. P.
, and
Convery
,
P.
,
1997
, “
Calibration Problems Encountered While Monitoring Stump/Socket Interface Pressures With Force Sensing Resistors: Techniques Adopted to Minimise Inaccuracies
,”
Prosthet. Orthot. Int.
,
21
(
3
), pp.
179
182
.
13.
Schofield
,
J. S.
,
Evans
,
K. R.
,
Hebert
,
J. S.
,
Marasco
,
P. D.
, and
Carey
,
J. P.
,
2016
, “
The Effect of Biomechanical Variables on Force Sensitive Resistor Error: Implications for Calibration and Improved Accuracy
,”
J. Biomech.
,
49
(
5
), pp.
786
792
.
14.
Dabling
,
J. G.
,
Filatov
,
A.
, and
Wheeler
,
J. W.
,
2012
, “
Static and Cyclic Performance Evaluation of Sensors for Human Interface Pressure Measurement
,”
34th Annual International Conference of the IEEE EMBS
, San Diego, CA, Aug. 28–Sept. 1, pp.
162
165
.
15.
Hachisuka
,
K.
,
Takahashi
,
M.
,
Ogata
,
H.
,
Ohmine
,
S.
,
Shitama
,
H.
, and
Shinkoda
,
K.
,
1998
, “
Properties of the Flexible Pressure Sensor Under Laboratory Conditions Simulating the Internal Environment of the Total Surface Bearing Socket
,”
Prosthet. Orthot. Int.
,
22
(
3
), pp.
186
192
.
16.
Polliack
,
A. A.
,
Sieh
,
R. C.
,
Craig
,
D. D.
,
Landsberger
,
S.
,
McNeil
,
D. R.
, and
Ayyappa
,
E.
,
2000
, “
Scientific Validation of Two Commercial Pressure Sensor Systems for Prosthetic Socket Fit
,”
Prosthet. Orthot. Int.
,
24
(
1
), pp.
63
73
.
17.
Komi
,
E. R.
,
Roberts
,
J. R.
, and
Rothberg
,
S. J.
,
2007
, “
Evaluation of Thin, Flexible Sensors for Time-Resolved Grip Force Measurement
,”
Proc. Inst. Mech. Eng., Part C
,
221
(
12
), pp.
1687
1699
.
18.
Vecchi
,
F.
,
Freschi
,
C.
,
Micera
,
S.
,
Sabatini
,
A. M.
,
Dario
,
P.
, and
Sacchetti
,
R.
,
2000
, “
Experimental Evaluation of Two Commercial Force Sensors for Applications in Biomechanics and Motor Control
,”
Fifth Annual Conference of the International Functional Electrical Stimulation Society
, Aalborg, Denmark, June 18, pp.
44
54
.
19.
Sanders
,
J. E.
,
Harrison
,
D. S.
,
Myers
,
T. R.
, and
Allyn
,
K. J.
,
2011
, “
Effects of Elevated Vacuum on In-Socket Residual Limb Fluid Volume: Case Study Results Using Bioimpedance Analysis
,”
J. Rehabil. Res. Dev.
,
48
(
10
), pp.
1234
1248
.
20.
Sanders
,
J. E.
,
Cagle
,
J. C.
,
Allen
,
K. J.
,
Harrison
,
D. S.
, and
Ciol
,
M. A.
,
2014
, “
How Do Walking, Standing, and Resting Influence Transtibial Amputee Residual Limb Fluid Volume?
,”
J. Rehabil. Res. Dev.
,
51
(
2
), pp.
201
212
.
21.
Sanders
,
J. E.
,
Redd
,
C. B.
,
Cagle
,
J. C.
,
Hafner
,
B. J.
,
Gardner
,
D.
,
Allyn
,
K. J.
,
Harrison
,
D. S.
, and
Ciol
,
M. A.
,
2016
, “
Preliminary Evaluation of a Novel Bladder-Liner for Facilitating Residual-Limb Fluid Volume Recovery Without Doffing
,”
J. Rehabil. Res. Dev.
,
53
(
6
), pp.
1107
1120
.
22.
Sanders
,
J. E.
,
Youngblood
,
R. T.
,
Hafner
,
B. J.
,
Cagle
,
J. C.
,
McLean
,
J. B.
,
Redd
,
C. B.
,
Dietrich
,
C. R.
,
Ciol
,
M. A.
, and
Allyn
,
K. J.
,
2017
, “
Effects of Socket Size on Metrics of Socket Fit in Trans-Tibial Prosthesis Users
,”
Med. Eng. Phys.
,
44
, pp.
32
43
.
23.
Zhang
,
M.
,
Turner-Smith
,
A. R.
,
Tanner
,
A.
, and
Roberts
,
V. C.
,
1998
, “
Clinical Investigation of the Pressure and Shear Stress on the Trans-Tibial Stump With a Prosthesis
,”
Med. Eng. Phys.
,
20
(
3
), pp.
188
198
.
24.
Sanders
,
J. E.
,
Zachariah
,
S. G.
,
Jacobsen
,
A. K.
, and
Fergason
,
J. R.
,
2005
, “
Changes in Interface Pressures and Shear Stresses Over Time on Trans-Tibial Amputee Subjects Ambulating With Prosthetic Limbs: Comparison of Diurnal and Six-Month Differences
,”
J. Biomech.
,
38
(
8
), pp.
1566
1573
.
25.
Sanders
,
J. E.
,
Jacobsen
,
A. K.
, and
Fergason
,
J. R.
,
2006
, “
Effects of Fluid Insert Volume Changes on Socket Pressures and Shear Stresses: Case Studies From Two Trans-Tibial Amputee Subjects
,”
Prosthet. Orthot. Int.
,
30
(
3
), pp.
257
269
.
26.
Zachariah
,
S. G.
, and
Sanders
,
J. E.
,
2001
, “
Standing Interface Stresses as a Predictor of Walking Interface Stresses in the Trans-Tibial Prosthesis
,”
Prosthet. Orthot. Int.
,
25
(
1
), pp.
34
40
.
27.
Paredes-Madrid
,
L.
,
Matute
,
A.
,
Bareño
,
J. O.
,
Vargas
,
C. A. P.
, and
Velásquez
,
E. I. G.
,
2017
, “
Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs): A Study on Creep Response and Dynamic Loading
,”
Materials (Basel)
,
10
(
11
), p.
1334
.
28.
Lebosse
,
C.
,
Renaud
,
P.
,
Bayle
,
B.
, and
De Mathelin
,
M.
,
2011
, “
Modeling and Evaluation of Low-Cost Force Sensors
,”
IEEE Trans. Robot.
,
27
(
4
), pp.
815
822
.
29.
Hollinger
,
A.
, and
Wanderley
,
M. M.
,
2006
, “
Evaluation of Commercial Force-Sensing Resistors
,”
International Conference on New Interfaces for Musical Expression
, Paris, France, June 4–8, pp.
4
8
.
You do not currently have access to this content.