Atrial fibrillation (AF) is the most common irregular heartbeat among the world's population and is a major contributor to cardiogenic embolisms and acute ischemic stroke (AIS). However, the role AF flow plays in the trajectory paths of cardiogenic emboli has not been experimentally investigated. A physiological simulation system was designed to analyze the trajectory patterns of bovine embolus analogs (EAs) (n = 720) through four patient-specific models, under three flow conditions: steady flow, normal pulsatile flow, and AF pulsatile flow. It was seen that EA trajectory paths were proportional to the percentage flowrate split of 25–31% along the branching vessels. Overall, AF flow conditions increased trajectories through the left- (LCCA) and right (RCCA)-common carotid artery by 25% with respect to normal pulsatile flow. There was no statistical difference in the distribution of clot trajectories when the clot was released from the right, left, or anterior positions. Significantly, more EAs traveled through the brachiocephalic trunk (BCT) than through the LCCA or the left subclavian. Yet of the EAs that traveled through the common carotid arteries, there was a greater affiliation toward the LCCA compared to the RCCA (p < 0.05).

References

References
1.
Lakhan
,
S. E.
,
Kirchgessner
,
A.
, and
Hofer
,
M.
,
2009
, “
Inflammatory Mechanisms in Ischemic Stroke: Therapeutic Approaches
,”
J. Transl. Med.
,
7
, p.
97
.
2.
Kannel
,
W. B.
, and
Benjamin
,
E. J.
,
2008
, “
Status of the Epidemiology of Atrial Fibrillation
,”
Med. Clin. North Am.
,
92
(
1
), pp.
17
40
.
3.
Kelley
,
R. E.
, and
Alireza
,
M.
,
2003
, “
Cardioembolic Stroke: An Update
,”
South. Med. J.
,
96
(
4
), p.
343
.
4.
Beldi
,
G.
,
Beng
,
L.
,
Siegel
,
G.
,
Bisch-Knaden
,
S.
, and
Candinas
,
D.
,
2007
, “
Prevention of Perioperative Thromboembolism in Patients With Atrial Fibrillation
,”
Br. J. Surg.
,
94
(
11
), pp.
1351
1355
.
5.
Blackshear
,
J. L.
, and
Odell
,
J. A.
,
1996
, “
Appendage Obliteration to Reduce Stroke in Cardiac Surgical Patients With Atrial Fibrillation
,”
Ann. Thorac. Surg.
,
61
(
2
), pp.
755
759
.
6.
Menke
,
J.
,
Lüthje
,
L.
,
Kastrup
,
A.
, and
Larsen
,
J.
,
2010
, “
Thromboembolism in Atrial Fibrillation
,”
Am. J. Cardiol.
,
105
(
4
), pp.
502
510
.
7.
Fuster
,
V.
,
Ryden
,
L. E.
,
Cannom
,
D. S.
,
Crijns
,
H. J.
,
Curtis
,
A. B.
,
Ellenbogen
,
K. A.
,
Halperin
,
J. L.
,
Le Heuzey
,
J. Y.
,
Kay
,
G. N.
,
Lowe
,
J. E.
,
Olsson
,
S. B.
,
Prystowsky
,
E. N.
,
Tamargo
,
J. L.
,
Wann
,
S.
,
Smith
,
S. C.
, Jr.
,
Jacobs
,
A. K.
,
Adams
,
C. D.
,
Anderson
,
J. L.
,
Antman
,
E. M.
,
Halperin
,
J. L.
,
Hunt
,
S. A.
,
Nishimura
,
R.
,
Ornato
,
J. P.
,
Page
,
R. L.
,
Riegel
,
B.
,
Priori
,
S. G.
,
Blanc
,
J. J.
,
Budaj
,
A.
,
Camm
,
A. J.
,
Dean
,
V.
,
Deckers
,
J. W.
,
Despres
,
C.
,
Dickstein
,
K.
,
Lekakis
,
J.
,
McGregor
,
K.
,
Metra
,
M.
,
Morais
,
J.
,
Osterspey
,
A.
,
Tamargo
,
J. L.
, and
Zamorano
,
J. L.
,
2006
, “
Guidelines for the Management of Patients With Atrial Fibrillation
,”
Circulation
,
114
(7), pp.
257
354
.
8.
Heeringa
,
J.
,
van der Kuip
,
D. A.
,
Hofman
,
A.
,
Kors
,
J. A.
,
van Herpen
,
G.
,
Stricker
,
B. H.
,
Stijnen
,
T.
,
Lip
,
G. Y.
, and
Witteman
,
J. C.
,
2006
, “
Prevalence, Incidence and Lifetime Risk of Atrial Fibrillation: The Rotterdam Study
,”
Eur. Heart J.
,
27
(
8
), pp.
949
953
.
9.
Prystowsky
,
E. N.
,
2008
, “
The History of Atrial Fibrillation: The Last 100 Years
,”
J. Cardiovasc. Electrophysiol.
,
19
(
6
), pp.
575
582
.
10.
Choi
,
H. W.
,
Navia
,
J. A.
, and
Kassab
,
G. S.
,
2013
, “
Stroke Propensity Is Increased Under Atrial Fibrillation Hemodynamics: A Simulation Study
,”
PLoS One
,
8
(9), p.
e78435
.
11.
Khodaee
,
F.
,
Vahidi
,
B.
, and
Fatouraee
,
N.
,
2016
, “
Analysis of Mechanical Parameters on the Thromboembolism Using a Patient-Specific Computational Model
,”
Biomech. Model Machanobiol.
,
15
(
5
), pp.
1295
1305
.
12.
Osorio
,
A. F.
,
Osorio
,
R.
,
Ceballos
,
A.
,
Tran
,
R.
,
Clark
,
W.
,
Divo
,
E. A.
,
Argueta-Morales
,
I. R.
,
Kassab
,
A. J.
, and
DeCampli
,
W. M.
,
2013
, “
Computational Fluid Dynamics Analysis of Surgical Adjustment of Left Ventricular Assist Device Implantation to Minimize Stroke Risk
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
6
), pp.
622
632
.
13.
Choi
,
H. W.
,
Lou
,
T.
,
Navia
,
J. A.
, and
Kassab
,
G. S.
,
2017
, “
Role of Aortic Geometry on Stroke Propensity Based on Simulations of Patients Specific Models
,”
Sci. Rep.
,
7
, p.
7065
.
14.
Fabbri
,
D.
,
Long
,
Q.
,
Das
,
S.
, and
Pinelli
,
M.
,
2014
, “
Computational Modelling of Emboli Travel Trajectories in Cerebral Arteries: Influence of Microembolic Particle Size and Density
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
289
302
.
15.
Shadden
,
S. C.
, and
Arzani
,
A.
,
2015
, “
Lagrangian Postprocessing of Computational Hemodynamics
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
41
58
.
16.
Mukherjee
,
D.
, and
Shadden
,
S. C.
,
2017
, “
Inertial Particle Dynamics in Large Artery Flows–Implications for Modeling Arterial Embolisms
,”
J. Biomech.
,
52
, pp.
155
164
.
17.
Mukherjee
,
D.
,
Padilla
,
J.
, and
Shadden
,
S. C.
,
2016
, “
Numerical Investigation of Fluid–Particle Interactions for Embolic Stroke
,”
Theor. Comput. Fluid Dyn.
,
30
(
1–2
), pp.
23
39
.
18.
Mukherjee
,
D.
,
Jani
,
N. D.
,
Selvaganesan
,
K.
,
Weng
,
C. L.
, and
Shadden
,
S. C.
,
2016
, “
Computational Assessment of the Relation Between Embolism Source and Embolus Distribution to the Circle of Willis for Improved Understanding of Stroke Etiology
,”
ASME J. Biomech. Eng.
,
138
(
8
), p.
081008
.
19.
Aycock
,
K. I.
,
Campbell
,
R. L.
,
Manning
,
K. B.
, and
Craven
,
B. A.
,
2017
, “
A Resolved Two-Way Coupled CFD/6-DOF Approach for Predicting Embolus Transport and the Embolus-Trapping Efficiency of IVC Filters
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
851
869
.
20.
Conti
,
M.
,
Vandenberghe
,
S.
,
Marconi
,
S.
,
Ferrari
,
E.
,
Romarowski
,
R. M.
,
Morganti
,
S.
,
Auricchio
,
F.
, and
Demertzis
,
S.
,
2018
, “
Reversed Auxiliary Flow to Reduce Embolism Risk During TAVI: A Computational Simulation and Experimental Study
,”
Cardiovasc. Eng. Technol.
,
10
(
1
), pp.
124
135
.
21.
Mukherjee
,
D.
,
Jani
,
N. D.
,
Narvid
,
J.
, and
Shadden
,
S. C.
,
2018
, “
The Role of Circle of Willis Anatomy Variations in Cardio-Embolic Stroke: A Patient-Specific Simulation Based Study
,”
Ann. Biomed. Eng.
,
46
(
8
), pp.
1128
1145
.
22.
Bushi
,
D.
,
Grad
,
Y.
,
Einav
,
S.
,
Yodfat
,
O.
,
Nishri
,
B.
, and
Tanne
,
D.
,
2005
, “
Hemodynamic Evaluation of Embolic Trajectory in an Arterial Bifurcation
,”
Stroke
,
36
(
12
), pp.
2696
2700
.
23.
Chung
,
E. M. L.
,
Hague
,
J. P.
,
Chanrion
,
M.-A.
,
Ramnarine
,
K. V.
,
Katsogridakis
,
E.
, and
Evans
,
D. H.
,
2010
, “
Embolus Trajectory Through a Physical Replica of the Major Cerebral Arteries
,”
Stroke
,
41
(
4
), pp.
647
652
.
24.
Fahy
,
P.
,
Malone
,
F.
,
McCarthy
,
E.
,
McCarthy
,
P.
,
Thornton
,
J.
,
Brennan
,
P.
,
O'Hare
,
A.
,
Looby
,
S.
,
Sultan
,
S.
,
Hynes
,
N.
, and
Morris
,
L.
,
2015
, “
An In Vitro Evaluation of Emboli Trajectories Within a Three-Dimensional Physical Model of the Circle of Willis Under Cerebral Blood Flow Conditions
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
2265
2278
.
25.
Chueh
,
J. Y.
,
Puri
,
A. S.
,
Wakhloo
,
A. K.
, and
Gounis
,
M. J.
,
2014
, “
Risk of Distal Embolization With Stent Retriever Thrombectomy and ADAPT
,”
J. Neurointervent Surg
,
8
(2), pp. 197–202.
26.
Clark
,
W. D.
,
Eslahpazir
,
B. A.
,
Argueta-Morales
,
I. R.
,
Kassab
,
A. J.
,
Divo
,
E. A.
, and
DeCampli
,
W. M.
,
2015
, “
Comparison Between Bench-Top and Computational Modelling of Cerebral Thromboembolism in Ventricular Assist Device Circulation
,”
Cardiovasc. Eng. Technol.
,
6
(
3
), pp.
242
255
.
27.
Pollanen
,
M. S.
,
1991
, “
Behavior of Suspended Particles at Bifurcations: Implications for Embolism
,”
Phys. Med. Biol.
,
36
(
3
), pp.
397
401
.
28.
Uflacker
,
R.
,
2007
, Atlas of Vascular Anatomy: An Angiographic Approach, Lippincott Williams & Wilkins, Charleston, SC, pp.
133
163
.
29.
Ou
,
P.
,
Celermajer
,
D. S.
,
Mousseaux
,
E.
,
Giron
,
A.
,
Aggoun
,
Y.
,
Szezepanski
,
I.
,
Sidi
,
D.
, and
Bonnet
,
D.
,
2007
, “
Vascular Remodeling After ‘Successful’ Repair of Coarctation Impact of Aortic Arch Geometry
,”
J. Am. Coll. Cardiol.
,
49
(
8
), pp.
883
890
.
30.
Agnoletti
,
G.
,
Ou
,
P.
,
Celermajer
,
D. S.
,
Boudjemline
,
Y.
,
Marini
,
D.
,
Bonnet
,
D.
, and
Aggoun
,
Y.
,
2008
, “
Acute Angulation of the Aortic Arch Predisposes a Patient to Ascending Aortic Dilatation and Aortic Regurgitation Late After the Arterial Switch Operation for Transposition of the Great Arteries
,”
J. Thorac. Cardiovasc. Surg.
,
135
(
3
), pp.
568
572
.
31.
Demertzis
,
S.
,
Hurni
,
S.
,
Stalder
,
M.
,
Gahl
,
B.
,
Herrmann
,
G.
, and
Van den Berg
,
J.
,
2010
, “
Aortic Arch Morphometry in Living Humans
,”
J. Anat.
,
217
(
5
), pp.
588
596
.
32.
Reymond
,
P.
,
Merenda
,
F.
,
Perren
,
F.
,
Ruefenacht
,
D.
, and
Stergiopulos
,
N.
,
2009
, “
Validation of a One-Dimensional Model of the Systemic Arterial Tree
,”
Am. Physiol. Soc.
,
297
(
1
), pp.
208
222
.
33.
Clark
,
D. M.
,
Plumb
,
V. J.
,
Epstein
,
A. E.
, and
Kay
,
G. N.
,
1997
, “
Hemodynamic Effects of an Irregular Sequence of Ventricular Cycle Lengths During Atrial Fibrillation
,”
J. Am. Coll. Cardiol.
,
30
(
4
), pp.
1039
1045
.
34.
Stein
,
P. D.
, and
Sabbah
,
H. N.
,
1976
, “
Turbulent Blood Flow in the Ascending Aorta of Humans With Normal and Diseased Aortic Valves
,”
Circ. Res.
,
39
(
1
), pp.
58
65
.
35.
Hennen
,
B.
,
Markwirth
,
T.
,
Scheller
,
B.
,
Schäfers
,
H. J.
, and
Wendler
,
O.
,
2001
, “
Do Changes in Blood Flow in the Subclavian Artery Affect Flow Volume in IMA Grafts After Complete Arterial Revascularization With the T-Graft Technique?
,”
Thorac. Cardiovasc. Surg.
,
49
(
2
), pp.
84
88
.
36.
Tokuda
,
Y.
,
Song
,
M. H.
,
Ueda
,
Y.
,
Usui
,
A.
,
Akita
,
T.
,
Yoneyama
,
S.
, and
Maruyama
,
S.
,
2008
, “
Three-Dimensional Numerical Simulation of Blood Flow in the Aortic Arch During Cardiopulmonary Bypass
,”
Eur. J. Cardio-Thorac. Surg.
,
33
(
2
), pp.
164
167
.
37.
Sato
,
K.
,
Ogoh
,
S.
,
Hirasawa
,
A.
,
Oue
,
A.
, and
Sadamoto
,
T.
,
2011
, “
The Distribution of Blood Flow in the Carotid and Vertebral Arteries During Dynamic Exercise in Humans
,”
J. Physiol.
,
589
(
11
), pp.
2847
2856
.
38.
Benim
,
A. C.
,
Nahavandi
,
A.
,
Assmann
,
A.
,
Schubert
,
D.
,
Feindt
,
P.
, and
Suh
,
S. H.
,
2011
, “
Simulation of Blood Flow in Human Aorta With Emphasis on Outlet Boundary Conditions
,”
Appl. Math. Modell.
,
35
(
7
), pp.
3175
3188
.
39.
Bürk
,
J.
,
Blanke
,
P.
,
Stankovic
,
Z.
,
Barker
,
A.
,
Russe
,
M.
,
Geiger
,
J.
,
Frydrychowicz
,
A.
,
Langer
,
M.
, and
Markl
,
M.
,
2012
, “
Evaluation of 3D Blood Flow Patterns and Wall Shear Stress in the Normal and Dilated Thoracic Aorta Using Flow Sensitive 4D CMR
,”
J. Cardiovasc. Magn. Reson.
,
14
, p.
84
.
40.
Malone
,
F.
,
MacCarthy
,
E.
,
Delassus
,
P.
,
Fahy
,
P.
,
Kennedy
,
J.
,
Fagan
,
A. J.
, and
Morris
,
L.
,
2018
, “
The Mechanical Characterisation of Bovine Embolus Analogues Under Various Loading Conditions
,”
Cardiovasc. Eng. Technol.
,
9
(
3
), pp.
489
502
.
41.
Chueh
,
J. K.
,
Wakhloo
,
A. K.
,
Hendricks
,
G. H.
,
Silva
,
C. F.
,
Weaver
,
J. P.
, and
Gounis
,
M. J.
,
2011
, “
Mechanical Characterisation of Thromboemboli in Acute Ischemic Stroke and Laboratory Embolus Analogs
,”
Am. J. Neurobiol.
,
32
(
7
), pp.
1237
1244
.
42.
Thambidorai
,
S. K.
,
Murray
,
R. D.
,
Parakh
,
K.
,
Shah
,
T. K.
,
Black
,
I. W.
,
Jasper
,
S. E.
,
Li
,
J.
,
Apperson-Hansen
,
C.
,
Asher
,
C. R.
,
Grimm
,
R. A.
, and
Klein
,
A. L.
,
2005
, “
Utility of Transesophageal Echocardiography in Identification of Thrombogenic Milieu in Patients With Atrial Fibrillation (An ACUTE Ancillary Study)
,”
Am. J. Cardiol.
,
96
(
7
), pp.
935
941
.
43.
Madhwal
,
S.
,
Rajagopal
,
V.
,
Bhatt
,
D. L.
,
Bajzer
,
C. T.
,
Whitlow
,
P.
, and
Kapadia
,
S. R.
,
2008
, “
Predictors of Difficult Carotid Stenting as Determined by Aortic Arch Angiography
,”
J. Invasive Cardiol
,
20
(
5
), pp.
200
204
.
44.
Chung
,
J. W.
,
Park
,
S. H.
, and
Kim
,
N.
,
2014
, “
Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Classification and Vascular Territory of Ischemic Stroke Lesions Diagnosed by Diffusion-Weighted Imaging
,”
J. Am. Heart Assoc.
,
3
(
4
), p.
e001119
.
45.
Sanna
,
T.
,
Diener
,
H.-C.
,
Passman
,
R. S.
,
Di Lazzaro
,
V.
,
Bernstein
,
R. A.
,
Morillo
,
C. A.
,
Rymer
,
M. M.
,
Thijs
,
V.
,
Rogers
,
T.
,
Beckers
,
F.
,
Lindborg
,
K.
,
Brachmann
,
J.
, and
CRYSTAL AF Investigators,
2014
, “
Cryptogenic Stroke and Underlying Atrial Fibrillation
,”
N. Engl. J. Med.
,
370
(
26
), pp.
2478
2486
.
46.
Park
,
K. Y.
,
Kim
,
Y. B.
,
Chung
,
P. W.
,
Moon
,
H. S.
,
Suh
,
B. C.
,
Yoon
,
K. J.
, and
Lee
,
Y. T.
,
2014
, “
Right Side Propensity of Cardiogenic Emboli in Acute Ischemic Stroke With Atrial Fibrillation
,”
Scand. Cardiovasc. J.
,
48
(
6
), pp.
335
338
.
47.
Gold
,
M.
,
Khamesi
,
M.
,
Sivakuma
,
M.
,
Natarajan
,
V.
,
Motahari
,
H.
, and
Caputo
,
N.
,
2018
, “
Right-Left Propensity of Cardiogenic Cerebral Embolism in Standard Versus Bovine Aortic Arch Variant
,”
Clin. Anat.
,
31
(3), pp. 310–313.
48.
Meyer
,
J. S.
,
Charney
,
J. Z.
,
Rivera
,
V. M.
, and
Mathew
,
M. T.
,
1971
, “
Cerebral Embolization: Prospective Clinical Analysis of 42 Cases
,”
Stroke
,
2
(
6
), pp.
541
554
.
49.
Hedna
,
W. S.
,
Bodhit
,
A. N.
,
Ansari
,
S.
,
Falchook
,
A. D.
,
Stead
,
L.
,
Heilman
,
K. M.
, and
Waters
,
M. F.
,
2013
, “
Hemispheric Differences in Ischemic Stroke: Is Left Hemisphere Stroke More Common?
,”
J. Clin. Neurol.
,
9
(
2
), pp.
97
102
.
50.
Rodriguez Hernandez
,
S.
,
Kroon
,
A. A.
,
van boztel
,
M. P. J.
,
Mess
,
W. H.
,
Lodder
,
J.
,
Jolles
,
J.
, and
de leeuw
,
P. W.
,
2003
, “
Is There Side Predilection for Cerebrovascular Disease?
,”
Hypertension
,
42
(
1
), pp.
56
60
.
51.
Gralla
,
J.
,
Schroth
,
G.
,
Remonda
,
L.
,
Fleischmann
,
A.
,
Fandino
,
J.
,
Slotboom
,
J.
, and
Brekenfeld
,
C.
,
2006
, “
A Dedicated Animal Model for Mechanical Thrombectomy in Acute Stroke
,”
AJNR
,
27
(
6
), pp.
1357
1361
.
52.
Chandler
,
A. B.
,
1958
, “
In Vitro Thrombotic Coagulation of the Blood; a Method for Producing a Thrombus
,”
Lab Invest.
,
7
(
2
), pp.
110
114
.
53.
Mutch
,
N. J.
,
Moore
,
N. R.
,
Mattsson
,
C.
,
Jonasson
,
H.
,
Green
,
A. R.
, and
Booth
,
N. A.
,
2008
, “
The Use of the Chandler Loop to Examine the Interaction Potential of NXY—059 on the Thrombolytic Properties of rtPA on Human Thrombi In Vitro
,”
Br. J. Pharmacol.
,
153
(
1
), pp.
124
131
.
54.
Leary
,
M. C.
, and
Caplan
,
L. R.
,
2008
, “
Cardioembolic Stroke: An Update on Etiology, Diagnosis and Management
,”
Ann. Indian Acad. Neurol.
,
11
(
5
), pp.
52
63
.
You do not currently have access to this content.