The anthropometries of elite wheelchair racing athletes differ from the generic, able-bodied anthropometries commonly used in computational biomechanical simulations. The impact of using able-bodied parameters on the accuracy of simulations involving wheelchair racing is currently unknown. In this study, athlete-specific mass segment inertial parameters of the head and neck, torso, upper arm, forearm, hand, thigh, shank, and feet for five elite wheelchair athletes were calculated using dual-energy X-ray absorptiometry (DXA) scans. These were compared against commonly used anthropometrics parameters of data presented in the literature. A computational biomechanical simulation of wheelchair propulsion using the upper extremity dynamic model in opensim assessed the sensitivity of athlete-specific mass parameters using Kruskal–Wallis analysis and Spearman correlations. Substantial between-athlete body mass distribution variances (thigh mass between 7.8% and 22.4% total body mass) and between-limb asymmetries (<62.4% segment mass; 3.1 kg) were observed. Compared to nonathletic able-bodied anthropometric data, wheelchair racing athletes demonstrated greater mass in the upper extremities (up to 3.8% total body mass) and less in the lower extremities (up to 9.8% total body mass). Computational simulations were sensitive to individual body mass distribution, with joint torques increasing by up to 31.5% when the scaling of segment masses (measured or generic) differed by up to 2.3% total body mass. These data suggest that nonathletic, able-bodied mass segment inertial parameters are inappropriate for analyzing elite wheelchair racing motion.

References

References
1.
Neptune
,
R. R.
,
2000
, “
Computer Modeling and Simulation of Human Movement. Applications in Sport and Rehabilitation
,”
Phys. Med. Rehabil. Clin. North Am.
,
11
(
2
), pp.
417
434
.
2.
Valente
,
G.
,
Pitto
,
L.
,
Testi
,
D.
,
Seth
,
A.
,
Delp
,
S. L.
,
Stagni
,
R.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2014
, “
Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
,”
PLoS One
,
9
(
11
), p.
e112625
.
3.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
4.
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S. L.
,
2015
, “
Is my Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(
2
), pp.
1
24
.
5.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
3
), pp.
171
184
.
6.
Blana
,
D.
,
Hincapie
,
J. G.
,
Chadwick
,
E. K.
, and
Kirsch
,
R. F.
,
2008
, “
A Musculoskeletal Model of the Upper Extremity for Use in the Development of Neuroprosthetic Systems
,”
J. Biomech.
,
41
(
8
), pp.
1714
1721
.
7.
Saul
,
K. R.
,
Hu
,
X.
,
Goehler
,
C. M.
,
Vidt
,
M. E.
,
Daly
,
M.
,
Velisar
,
A.
, and
Murray
,
W. M.
,
2015
, “
Benchmarking of Dynamic Simulation Predictions in Two Software Platforms Using an Upper Limb Musculoskeletal Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
13
), pp.
1445
1458
.
8.
Holzbaur
,
K. R.
,
Murray
,
W. M.
, and
Delp
,
S. L.
,
2005
, “
A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
829
840
.
9.
Charlton
,
I. W.
, and
Johnson
,
G. R.
,
2006
, “
A Model for the Prediction of the Forces at the Glenohumeral Joint
,”
Proc. Inst. Mech. Eng., Part H
,
220
(
8
), pp.
801
812
.
10.
Dillon
,
M. P.
,
Barker
,
T. M.
, and
Pettet
,
G.
,
2008
, “
Effect of Inaccuracies in Anthropometric Data and Linked-Segment Inverse Dynamic Modeling on Kinetics of Gait in Persons With Partial Foot Amputation
,”
J. Rehabil. Res. Dev.
,
45
(
9
), pp.
1303
1316
.
11.
Klein Breteler
,
M. D.
,
Spoor
,
C. W.
, and
Van der Helm
,
F. C.
,
1999
, “
Measuring Muscle and Joint Geometry Parameters of a Shoulder for Modeling Purposes
,”
J. Biomech.
,
32
(
11
), pp.
1191
1197
.
12.
McConville
,
J. T.
,
and Air Force Aerospace Medical Research Laboratory (U.S.)
,
1981
,
Anthropometric Relationships of Body and Body Segment Moments of Inertia
, Air Force Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force Systems,
Wright-Patterson Air Force Base
,
OH; Washington, D.C.; Springfield, VA
.
13.
Clauser
,
C. E.
,
McConville
,
J. T.
, and
Young
,
J. W.
,
1969
, “
Weight, Volume, and Center of Mass Segments of the Human Body
,”
J. Occup. Environ. Med.
,
13
(
5
), p.
270
.
14.
de Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
15.
Reich
,
J.
, and
Daunicht
,
W. J.
,
2000
, “
A Rigid Body Model of the Forearm
,”
J. Biomech.
,
33
(
9
), pp.
1159
1168
.
16.
Sartori
,
M.
,
Gizzi
,
L.
,
Lloyd
,
D. G.
, and
Farina
,
D.
,
2013
, “
A Musculoskeletal Model of Human Locomotion Driven by a Low Dimensional Set of Impulsive Excitation Primitives
,”
Front. Comput. Neurosci.
,
7
(
79
), pp.
1
22
.
17.
Ganley
,
K. J.
, and
Powers
,
C. M.
,
2004
, “
Determination of Lower Extremity Anthropometric Parameters Using Dual Energy X-Ray Absorptiometry: The Influence on Net Joint Moments During Gait
,”
Clin. Biomech. (Bristol, Avon)
,
19
(
1
), pp.
50
56
.
18.
Cheng
,
C. K.
,
Chen
,
H. H.
,
Chen
,
C. S.
,
Chen
,
C. L.
, and
Chen
,
C. Y.
,
2000
, “
Segment Inertial Properties of Chinese Adults Determined From Magnetic Resonance Imaging
,”
Clin. Biomech. (Bristol, Avon)
,
15
(
8
), pp.
559
566
.
19.
Durkin
,
J. L.
, and
Dowling
,
J. J.
,
2003
, “
Analysis of Body Segment Parameter Differences Between Four Human Populations and the Estimation Errors of Four Popular Mathematical Models
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
515
522
.
20.
Winter
,
D. A.
,
1990
, “
Anthropometry
,”
Biomechanics and Motor Control of Human Movement
,
Wiley
,
Hoboken, NJ
, pp.
82
106
.
21.
Hanavan
,
E. P.
, Jr.
,
1964
, “
A Mathematical Model of the Human Body
,” Aerospace Medical Research Laboratories (U.S.), Wright-Patterson Air Force Base, OH, Report No.
AMRL-TR-64-102
.
22.
Pearsall
,
D. J.
, and
Costigan
,
P. A.
,
1999
, “
The Effect of Segment Parameter Error on Gait Analysis Results
,”
Gait Posture
,
9
(
3
), pp.
173
183
.
23.
Rao
,
G.
,
Amarantini
,
D.
,
Berton
,
E.
, and
Favier
,
D.
,
2006
, “
Influence of Body Segments' Parameters Estimation Models on Inverse Dynamics Solutions During Gait
,”
J. Biomech.
,
39
(
8
), pp.
1531
1536
.
24.
Arnold
,
A. S.
, and
Delp
,
S. L.
,
2005
, “
Computer Modeling of Gait Abnormalities in Cerebral Palsy: Application to Treatment Planning
,”
TIES
,
6
(
3–4
), pp.
305
312
.
25.
Valente
,
G.
,
Taddei
,
F.
, and
Jonkers
,
I.
,
2013
, “
Influence of Weak Hip Abductor Muscles on Joint Contact Forces During Normal Walking: Probabilistic Modeling Analysis
,”
J. Biomech.
,
46
(
13
), pp.
2186
2193
.
26.
Keil
,
M.
,
Totosy de Zepetnek
,
J. O.
,
Brooke-Wavell
,
K.
, and
Goosey-Tolfrey
,
V. L.
,
2016
, “
Measurement Precision of Body Composition Variables in Elite Wheelchair Athletes, Using Dual-Energy X-Ray Absorptiometry
,”
Eur. J. Sport Sci.
,
16
(
1
), pp.
65
71
.
27.
Kocina
,
P.
,
1997
, “
Body Composition of Spinal Cord Injured Adults
,”
Sports Med.
,
23
(
1
), pp.
48
60
.
28.
Lussier
,
L.
,
Knight
,
J.
,
Bell
,
G.
,
Lohman
,
T.
, and
Morris
,
A. F.
,
1983
, “
Body Composition Comparison in Two Elite Female Wheelchair Athletes
,”
Paraplegia
,
21
(
1
), pp.
16
22
.
29.
Bolsterlee
,
B.
,
Veeger
,
D. H.
, and
Chadwick
,
E. K.
,
2013
, “
Clinical Applications of Musculoskeletal Modelling for the Shoulder and Upper Limb
,”
Med. Biol. Eng. Comput.
,
51
(
9
), pp.
953
963
.
30.
Langenderfer
,
J. E.
,
Laz
,
P. J.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2008
, “
An Efficient Probabilistic Methodology for Incorporating Uncertainty in Body Segment Parameters and Anatomical Landmarks in Joint Loadings Estimated From Inverse Dynamics
,”
ASME J. Biomech. Eng.
,
130
(
1
), pp.
1
7
.
31.
Wesseling
,
M.
,
de Groote
,
F.
, and
Jonkers
,
I.
,
2014
, “
The Effect of Perturbing Body Segment Parameters on Calculated Joint Moments and Muscle Forces During Gait
,”
J. Biomech.
,
47
(
2
), pp.
596
601
.
32.
Rossi
,
M.
,
Lyttle
,
A.
,
El-Sallam
,
A.
,
Benjanuvatra
,
N.
, and
Blanksby
,
B.
,
2013
, “
Body Segment Inertial Parameters of Elite Swimmers Using DXA and Indirect Methods
,”
J. Sports Sci. Med.
,
12
(
4
), pp.
761
775
.https://www.ncbi.nlm.nih.gov/pubmed/24421737
33.
Laschowski
,
B.
, and
McPhee
,
J.
,
2016
, “
Quantifying Body Segment Parameters Using Dual-Energy X-Ray Absorptiometry: A Paralympic Wheelchair Curler Case Report
,”
Procedia Eng.
,
147
, pp.
163
167
.
34.
Durkin
,
J. L.
, and
Dowling
,
J. J.
,
2006
, “
Body Segment Parameter Estimation of the Human Lower Leg Using an Elliptical Model With Validation From DEXA
,”
Ann. Biomed. Eng.
,
34
(
9
), pp.
1483
1493
.
35.
Lee
,
M. K.
,
Le
,
N. S.
,
Fang
,
A. C.
, and
Koh
,
M. T.
,
2009
, “
Measurement of Body Segment Parameters Using Dual Energy X-Ray Absorptiometry and Three-Dimensional Geometry: An Application in Gait Analysis
,”
J. Biomech.
,
42
(
3
), pp.
217
222
.
36.
Slosman
,
D. O.
,
Casez
,
J. P.
,
Pichard
,
C.
,
Rochat
,
T.
,
Fery
,
F.
,
Rizzoli
,
R.
,
Bonjour
,
J. P.
,
Morabia
,
A.
, and
Donath
,
A.
,
1992
, “
Assessment of Whole-Body Composition With Dual-Energy X-Ray Absorptiometry
,”
Radiology
,
185
(
2
), pp.
593
598
.
37.
Durkin
,
J. L.
,
Dowling
,
J. J.
, and
Andrews
,
D. M.
,
2002
, “
The Measurement of Body Segment Inertial Parameters Using Dual Energy X-Ray Absorptiometry
,”
J. Biomech.
,
35
(
12
), pp.
1575
1580
.
38.
Nana
,
A.
,
Slater
,
G. J.
,
Hopkins
,
W. G.
, and
Burke
,
L. M.
,
2013
, “
Effects of Exercise Sessions on DXA Measurements of Body Composition in Active People
,”
Med. Sci. Sports Exercise
,
45
(
1
), pp.
178
185
.
39.
Tweedy
,
S. M.
, and
Bourke
,
J.
,
2010
, “
IPC Athletics Classification Project for Physical Impairments; Final Report—Stage 1
,” IPC Athletics, Bonn, Germany, Report No. 1.
40.
International Triathlon Union
,
2015
, “
ITU Paratriathlon Classification Rules
,”
International Triathlon Union
,
Lausanne, Switzerland
.
41.
Dempster
,
W. T.
,
1955
, “
Space Requirements of the Seated Operator
,” Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base, OH.
42.
Laschowski
,
B.
, and
McPhee
,
J.
,
2016
, “
Body Segment Parameters of Paralympic Athletes From Dual-Energy X-Ray Absorptiometry
,”
Sports Eng.
,
19
(
3
), pp.
155
162
.
43.
Zatsiorsky
,
V.
,
2002
,
Kinetics of Human Motion
, Human Kinetics,
Champaign, IL
.
44.
Bell
,
D. R.
,
Sanfilippo
,
J. L.
,
Binkley
,
N.
, and
Heiderscheit
,
B. C.
,
2014
, “
Lean Mass Asymmetry Influences Force and Power Asymmetry During Jumping in Collegiate Athletes
,”
J. Strength Cond. Res.
,
28
(
4
), pp.
884
891
.
45.
Braune
,
W.
, and
Fischer
,
O.
,
1889
,
The Center of Gravity of the Human Body as Related to the German Infantryman
,
National Technical Information Service
,
Springfield, VA
.
46.
Chen
,
S.-C.
,
Hsieh
,
H.-J.
,
Lu
,
T.-W.
, and
Tseng
,
C.-H.
,
2011
, “
A Method for Estimating Subject-Specific Body Segment Inertial Parameters in Human Movement Analysis
,”
Gait Posture
,
33
(
4
), pp.
695
700
.
47.
Fujikawa
,
K.
,
1963
, “
The Center of Gravity in the Parts of Human Body
,”
Okajimas Folia Anat. Jpn.
,
39
(
3
), pp.
117
125
.
48.
Harless
,
E.
,
1860
, “
The Static Moments of the Component Masses of the Human Body
,”
Treatises of the Mathematics—Physics Class
,
Wright-Patterson Air Force Base, Royal Bavarian Academy of Sciences
,
Wright-Patterson Air Force Base, OH
, pp.
257
294
.
49.
Jensen
,
R. K.
,
1989
, “
Changes in Segment Inertia Proportions Between 4 and 20 Years
,”
J. Biomech.
,
22
(
6–7
), pp.
529
536
.
50.
Jensen
,
R. K.
,
1986
, “
Body Segment Mass, Radius and Radius of Gyration Proportions of Children
,”
J. Biomech.
,
19
(
5
), pp.
359
368
.
51.
Jensen
,
R. K.
, and
Fletcher
,
P.
,
1994
, “
Distribution of Mass to the Segments of Elderly Males and Females
,”
J. Biomech.
,
27
(
1
), pp.
89
96
.
52.
Ma
,
Y.
,
Lee
,
K.
,
Li
,
L.
, and
Kwon
,
J.
,
2011
, “
Nonlinear Regression Equations for Segmental Mass-Inertial Characteristics of Korean Adults Estimated Using Three-Dimensional Range Scan Data
,”
Appl. Ergonom.
,
42
(
2
), pp.
297
308
.
53.
Pavol
,
M. J.
,
Owings
,
T. M.
, and
Grabiner
,
M. D.
,
2002
, “
Body Segment Inertial Parameter Estimation for the General Population of Older Adults
,”
J. Biomech.
,
35
(
5
), pp.
707
712
.
54.
Mason
,
B.
,
Lenton
,
J.
,
Leicht
,
C.
, and
Goosey-Tolfrey
,
V.
,
2014
, “
A Physiological and Biomechanical Comparison of Over-Ground, Treadmill and Ergometer Wheelchair Propulsion
,”
J. Sports Sci.
,
32
(
1
), pp.
78
91
.
55.
Kainz
,
H.
,
2016
, “
Evaluation of Direct and Inverse Kinematic Modelling for Typical and Cerebral Palsy Gait
,” Griffith University, Queensland, Australia.
56.
DiGiovine
,
C. P.
,
Cooper
,
R. A.
,
DiGiovine
,
M. M.
,
Boninger
,
M. L.
, and
Robertson
,
R. N.
,
2000
, “
Frequency Analysis of Kinematics of Racing Wheelchair Propulsion
,”
IEEE Trans. Rehabil. Eng.
,
8
(
3
), pp.
2714
2716
.
57.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2008
, “
Whole Body Inverse Dynamics Over a Complete Gait Cycle Based Only on Measured Kinematics
,”
J. Biomech.
,
41
(
12
), pp.
2750
2759
.
58.
Hopkins
,
W. G.
,
2002
, “
A Scale of Magnitudes for Effect Statistics
,” Okayama University Medical School, Okayama, Japan, accessed May 18, 2017, http://www.sportsci.org/resource/stats/effectmag.html
59.
Veeger
,
H. E. J.
,
Rozendaal
,
L. A.
, and
van der Helm
,
F. C. T.
,
2002
, “
Load on the Shoulder in Low Intensity Wheelchair Propulsion
,”
Clin. Biomech. (Bristol, Avon)
,
17
(
3
), pp.
211
218
.
60.
Goosey
,
V.
,
Campbell
,
I. G.
, and
Fowler
,
N. E.
,
2000
, “
Effect of Push Frequency on the Economy of Wheelchair Racers
,”
Med. Sci. Sports Exercise
,
32
(
1
), pp.
174
181
.
61.
Vanlandewijck
,
Y. C.
,
Spaepen
,
A. J.
, and
Lysens
,
R. J.
,
1994
, “
Wheelchair Propulsion Efficiency—Movement Pattern Adaptations to Speed Changes
,”
Med. Sci. Sports Exercise
,
26
(
11
), pp.
1373
1381
.
62.
Wang
,
Y. T.
,
Deutsch
,
H.
,
Morse
,
M.
,
Hedrick
,
B.
, and
Millikan
,
T.
,
1995
, “
Three-Dimensional Kinematics of Wheelchair Propulsion Across Racing Speeds
,”
Adapt. Phys. Act. Q.
,
12
(
1
), pp.
78
89
.
You do not currently have access to this content.