There is a scant biomechanical literature that tests, in a laboratory setting, whether or not determinants of helmet fit affect biomechanical parameters associated with injury. Using conventional cycling helmets and repeatable models of the human head and neck, integrated into a guided drop impact experiment at speeds up to 6 m/s, this study tests the hypothesis that fit affects head kinematics, neck kinetics, and the extent to which the helmet moves relative to the underlying head (an indicator of helmet positional stability). While there were a small subset of cases where head kinematics were statistically significantly altered by fit, when viewed as a whole our measures of head kinematics suggest that fit does not systematically alter kinematics of the head secondary to impact. Similarly, when viewed as a whole, our data suggest that fit does not systematically alter resultant neck compression and resultant moment and associated biomechanical measures. Our data suggest that backward fit helmets exhibit the worst dynamic stability, in particular when the torso is impacted before the helmeted head is impacted, suggesting that the typical certification method of dynamical loading of a helmet to quantify retention may not be representative of highly plausible cycling incident scenarios where impact forces are first applied to the torso leading to loading of the neck prior to the head. Further study is warranted so that factors of fit that affect injury outcome are uncovered in both laboratory and real-world settings.

References

References
1.
Woodcock
,
J.
,
Tainio
,
M.
,
Cheshire
,
J.
,
O'Brien
,
O.
, and
Goodman
,
A.
,
2014
, “
Health Effects of the London Bicycle Sharing System: Health Impact Modelling Study
,”
BMJ
,
348
, p.
g425
.
2.
Durkin
,
M. S.
,
Laraque
,
D.
,
Lubman
,
I.
, and
Barlow
,
B.
,
1999
, “
Epidemiology and Prevention of Traffic Injuries to Urban Children and Adolescents
,”
Pediatrics
,
103
(
6
), p.
e74
.
3.
Keenan
,
H. T.
, and
Bratton
,
S. L.
,
2006
, “
Epidemiology and Outcomes of Pediatric Traumatic Brain Injury
,”
Dev. Neurosci.
,
28
(
4–5
), pp.
256
263
.
4.
Peloso
,
P. M.
,
von Holst
,
H.
, and
Borg
,
J.
,
2004
, “
Mild Traumatic Brain Injuries Presenting to Swedish Hospitals in 1987-2000
,”
J. Rehabil. Med.
,
43
(
Suppl
.), pp.
22
27
.
5.
Thurman
,
D. J.
,
Alverson
,
C.
,
Dunn
,
K. A.
,
Guerrero
,
J.
, and
Sniezek
,
J. E.
,
1999
, “
Traumatic Brain Injury in the United States: A Public Health Perspective
,”
J. Head Trauma Rehabil.
,
14
(
6
), pp.
602
615
.
6.
Dennis
,
J.
,
Ramsay
,
T.
,
Turgeon
,
A. F.
, and
Zarychanski
,
R.
,
2013
, “
Helmet Legislation and Admissions to Hospital for Cycling Related Head Injuries in Canadian Provinces and Territories: Interrupted Time Series Analysis
,”
BMJ
,
346
, p.
f2674
.
7.
Thompson
,
D. C.
,
Rivara
,
F. P.
, and
Thompson
,
R. S.
,
1996
, “
Effectiveness of Bicycle Safety Helmets in Preventing Head Injuries. A Case-Control Study
,”
JAMA
,
276
(
24
), pp.
1968
1973
.
8.
Rivara
,
F. P.
,
Thompson
,
D. C.
, and
Thompson
,
R. S.
,
1997
, “
Epidemiology of Bicycle Injuries and Risk Factors for Serious Injury
,”
Inj. Prev.
,
3
(
2
), pp.
110
114
.
9.
Cripton
,
P. A.
,
Dressler
,
D. M.
,
Stuart
,
C. A.
,
Dennison
,
C. R.
, and
Richards
,
D.
,
2014
, “
Bicycle Helmets Are Highly Effective at Preventing Head Injury During Head Impact: Head-Form Accelerations and Injury Criteria for Helmeted and Unhelmeted Impacts
,”
Accid. Anal. Prev.
,
70
, pp.
1
7
.
10.
Lee
,
R. S.
,
Hagel
,
B. E.
,
Karkhaneh
,
M.
, and
Rowe
,
B. H.
,
2009
, “
A Systematic Review of Correct Bicycle Helmet Use: How Varying Definitions and Study Quality Influence the Results
,”
Inj. Prev.
,
15
(
2
), pp.
125
131
.
11.
Parkinson
,
G. W.
, and
Hike
,
K. E.
,
2003
, “
Bicycle Helmet Assessment During Well Visits Reveals Severe Shortcomings in Condition and Fit
,”
Pediatrics
,
112
(
2
), pp.
320
323
.
12.
Rivara
,
F.
,
Astley
,
S.
,
Clarren
,
S.
,
Thompson
,
D.
, and
Thompson
,
R.
,
1999
, “
Fit of Bicycle Safety Helmets and Risk of Head Injuries in Children
,”
Inj. Prev.
,
5
(
3
), pp.
194
197
.
13.
CPSC
,
1998
, “
US Consumer Product Safety Commission (CPSC)—Safety Standard for Bicycle Helmets: Final Rule
,” US Consumer Product Safety Commission (CPSC),
College Park, MD
.
14.
Olivier
,
J.
, and
Creighton
,
P.
,
2017
, “
Bicycle Injuries and Helmet Use: A Systematic Review and Meta-Analysis
,”
Int. J. Epidemiol.
,
46
(
1
), pp.
278
292
.
15.
Chang
,
L.-T.
,
Chang
,
C.-H.
, and
Chang
,
G.-L.
, “
Fit Effect of Motorcycle Helmet—A Finite Element Modeling
,”
JSME Int. Ser. A
,
44
(
1
), pp.
185
192
.
16.
Jadischke
,
R.
,
2012
, “
Football Helmet Fitment and Its Effect on Helmet Performance
,” Wayne State University,
Detroit, MI
.
17.
Klug
,
C.
,
Feist
,
F.
, and
Tomasch
,
E.
,
2015
, “
Testing of Bicycle Helmets for Preadolescents
,”
International Research Council on the Biomechanics of Injury Conference
, Lyon, France, pp.
136
155
.
18.
Butz
,
R. C.
,
Knowles
,
B. M.
,
Newman
,
J. A.
, and
Dennison
,
C. R.
,
2015
, “
Effects of External Helmet Accessories on Biomechanical Measures of Head Injury Risk: An ATD Study Using the Hybrid III Headform
,”
J. Biomech.
,
48
(
14
), pp.
3816
3824
.
19.
Newman
,
J. A.
,
Beusenberg
,
M. C.
,
Shewchenko
,
N.
,
Withnall
,
C.
, and
Fournier
,
E.
,
2005
, “
Verification of Biomechanical Methods Employed in a Comprehensive Study of Mild Traumatic Brain Injury and the Effectiveness of American Football Helmets
,”
J. Biomech.
,
38
(
7
), pp.
1469
1481
.
20.
Knowles
,
B. M.
, and
Dennison
,
C. R.
,
2017
, “
Predicting Cumulative and Maximum Brain Strain Measures From Hybrid III Head Kinematics: A Combined Laboratory Study and Post-Hoc Regression Analysis
,”
Ann. Biomed. Eng.
,
45
(
9
), pp.
2146
2158
.
21.
Rowson
,
S.
, and
Duma
,
S. M.
,
2011
, “
Development of the STAR Evaluation System for Football Helmets: Integrating Player Head Impact Exposure and Risk of Concussion
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2130
2140
.
22.
Bland
,
M. L.
,
McNally
,
C.
, and
Rowson
,
S.
,
2018
, “
Differences in Impact Performance of Bicycle Helmets During Oblique Impacts
,”
ASME J. Biomech. Eng.
,
140
(
9
), p.
091005
.
23.
Bland
,
M. L.
,
Zuby
,
D. S.
,
Mueller
,
B. C.
, and
Rowson
,
S.
,
2018
, “
Differences in the Protective Capabilities of Bicycle Helmets in Real-World and Standard-Specified Impact Scenarios
,”
Traffic Inj. Prev.
,
19
(
Suppl. 1
), pp.
S158
S163
.
24.
Kendall
,
M.
,
Walsh
,
E. S.
, and
Hoshizaki
,
T. B.
,
2012
, “
Comparison Between Hybrid III and Hodgson–WSU Headforms by Linear and Angular Dynamic Impact Response
,”
Proc. Inst. Mech. Eng. Part P
,
226
(
3–4
), pp.
260
265
.
25.
NOCSAE
,
2013
, “
Standard Performance Specification for Newly Manufactured Football Helmets
,” National Operating Committee on Standards for Athletic Equipment, Overland Park, KS, Standard No. ND002-13m13.
26.
Padgaonkar
,
A. J.
,
Krieger
,
K. W.
, and
King
,
A. I.
,
1975
, “
Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
,
42
(
3
), pp.
552
556
.
27.
Mertz
,
H. J.
,
Irwin
,
A. L.
, and
Prasad
,
P.
,
2003
, “
Biomechanical and Scaling Bases for Frontal and Side Impact Injury Assessment Reference Values
,”
Stapp Car Crash J.
,
47
, pp.
155
188
.https://www.ncbi.nlm.nih.gov/pubmed/17096249
28.
Newman
,
J. A.
,
1986
, “
A Generalized Model for Brain Injury Threshold (GAMBIT)
,”
International IRCOBI Conference on the Biomechanics of Impact
, Zurich, Switzerland, Sept. 2–4, pp.
121
131
.
29.
Newman
,
J. A.
,
Shewchenko
,
N.
, and
Welbourne
,
E.
,
2000
, “
A Proposed New Biomechanical Head Injury Assessment Function—The Maximum Power Index
,”
SAE
Paper No. 2000-01-SC16.https://www.sae.org/publications/technical-papers/content/2000-01-sc16/
30.
Takhounts
,
E. G.
,
Craig
,
M. J.
,
Moorhouse
,
K.
,
McFadden
,
J.
, and
Hasija
,
V.
,
2013
, “
Development of Brain Injury Criteria (BrIC)
,”
Stapp Car Crash J.
,
57
, pp.
243
266
.https://www.ncbi.nlm.nih.gov/pubmed/24435734
31.
Yu
,
H. Y.
,
Knowles
,
B. M.
, and
Dennison
,
C. R.
,
2017
, “
A Test Bed to Examine Helmet Fit and Retention and Biomechanical Measures of Head and Neck Injury in Simulated Impact
,”
J. Visualized Exp.
,
127
, p.
e56288
.
32.
Romanow
,
N. R.
,
Hagel
,
B. E.
,
Williamson
,
J.
, and
Rowe
,
B. H.
, “
Cyclist Head and Facial Injury Risk in Relation to Helmet Fit: A Case-Control Study
,”
Chronic Dis. Inj. Can.
,
34
(
1
), pp.
1
7
.
33.
SAE International
,
2007
, “
Instrumentation for Impact Test—Part 1: Electronic Instrumentation
,” Society of Automotive Engineers, Warrendale, PA, Standard No.
SAE J211-1
.https://law.resource.org/pub/us/cfr/ibr/005/sae.j211-1.1995.pdf
34.
Fahlstedt
,
M.
,
Baeck
,
K.
,
Halldin
,
P.
, Vander
Sloten
,
J.
,
Goffin
,
J.
,
Depreitere
,
B.
, and
Kleiven
,
S.
,
2012
, “
Influence of Impact Velocity and Angle in a Detailed Reconstruction of a Bicycle Accident
,”
International IRCOBI Conference on the Biomechanics of Impacts
, Dublin, Ireland, Sept. 12–14, pp.
787
799
.
35.
Smith
,
T. A.
,
Halstead
,
P. D.
,
McCalley
,
E.
,
Kebschull
,
S. A.
,
Halstead
,
S.
, and
Killeffer
,
J.
,
2015
, “
Angular Head Motion With and Without Head Contact: Implications for Brain Injury
,”
Sports Eng.
,
18
(
3
), pp.
165
175
.
36.
Bourdet
,
N.
,
Deck
,
C.
,
Carreira
,
R. P.
, and
Willinger
,
R.
,
2012
, “
Head Impact Conditions in the Case of Cyclist Falls
,”
Proc. Inst. Mech. Eng. Part P
,
226
(
3–4
), pp.
282
289
.
37.
Eppinger
,
R.
,
Sun
,
E.
,
Kuppa
,
S.
, and
Saul
,
R.
,
2000
, “
Supplement: Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems—II
,” National Highway Traffic Safety Administration, Washington, DC.
38.
Nightingale
,
R. W.
,
McElhaney
,
J. H.
,
Richardson
,
W. J.
,
Best
,
T. M.
, and
Myers
,
B. S.
,
1996
, “
Experimental Impact Injury to the Cervical Spine: Relating Motion of the Head and the Mechanism of Injury
,”
J. Bone Jt. Surg.
,
78
(
3
), pp.
412
421
.
39.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Pesigan
,
M.
,
Reinartz
,
J.
,
Sances
,
A.
, Jr.
, and
Cusick
,
J. F.
,
1995
, “
Cervical Vertebral Strain Measurements Under Axial and Eccentric Loading
,”
ASME J. Biomech. Eng.
,
117
(
4
), pp.
474
479
.
40.
Holbourn
,
A. H. S.
,
1943
, “
Mechanics of Head Injuries
,”
Lancet
,
242
(
6267
), pp.
438
441
.
41.
Rowson
,
S.
, and
Duma
,
S. M.
,
2013
, “
Brain Injury Prediction: Assessing the Combined Probability of Concussion Using Linear and Rotational Head Acceleration
,”
Ann. Biomed. Eng.
,
41
(
5
), pp.
873
882
.
42.
Ghajari
,
M.
,
Peldschus
,
S.
,
Galvanetto
,
U.
, and
Iannucci
,
L.
,
2013
, “
Effects of the Presence of the Body in Helmet Oblique Impacts
,”
Accid. Anal. Prev.
,
50
, pp.
263
271
.
43.
Feist
,
F.
, and
Klug
,
C.
,
2016
, “
A Numerical Study on the Influence of the Upper Body and Neck on Head Kinematics in Tangential Bicycle Helmet Impact
,”
International Research Council on Biomechanics of Injury (IRCOBI) Conference
, Malaga, Spain, Sept. 14–16.
44.
ASTM,
2006
, “
Helmets Used in Recreational Bicycling or Roller Skating
,” American Society of Testing and Materials, West Conshohocken, PA, Standard No.
ASTM F1447-06
.https://www.astm.org/DATABASE.CART/HISTORICAL/F1447-06.htm
45.
Snell Memorial Foundations
,
2013
, “
Standard for Protective Headgear for Use With Bicycles
,” Snell Memorial Foundations, North Highlands, CA, Standard No.
SNELL B95A
.https://archive.org/details/gov.law.snell.org.b95rev.1998
46.
Aare
,
M.
, and
Halldin
,
P.
,
2003
, “
A New Laboratory Rig for Evaluating Helmets Subject to Oblique Impacts
,”
Traffic Inj. Prev.
,
4
(
3
), pp.
240
248
.
47.
Toomey
,
D. E.
,
Yang
,
K. H.
, and
Ee
,
C. A. V.
,
2014
, “
The Hybrid III Upper and Lower Neck Response in Compressive Loading Scenarios With Known Human Injury Outcomes
,”
Traffic Inj. Prev.
,
15
(
Suppl. 1
), pp.
S223
S230
.
You do not currently have access to this content.