Adhesion of carrier particles to the luminal surface of endothelium under hemodynamic flow conditions is critical for successful vascular drug delivery. Endothelial cells (ECs) line the inner surface of blood vessels. The effect of mechanical behavior of this compliant surface on the adhesion of blood-borne particles is unknown. In this contribution, we use a phase-plane method, first developed by Hammer and Lauffenburger (1987, “A Dynamical Model for Receptor-Mediated Cell Adhesion to Surfaces,” Biophys. J., 52(3), p. 475), to analyze the stability of specific adhesion of a spherical particle to a compliant interface layer. The model constructs a phase diagram and predicts the state of particle adhesion, subjected to an incident simple shear flow, in terms of interfacial elasticity, shear rate, binding affinity of cell adhesive molecules, and their surface density. The main conclusion is that the local deformation of the flexible interface inhibits the stable adhesion of the particle. In comparison with adhesion to a rigid substrate, a greater ligand density is required to establish a stable adhesion between a particle and a compliant interface.

References

References
1.
Yu
,
B.
,
Tai
,
H. C.
,
Xue
,
W.
,
Lee
,
L. J.
, and
Lee
,
R. J.
,
2010
, “
Receptor-Targeted Nanocarriers for Therapeutic Delivery to Cancer
,”
Mol. Membr. Biol.
,
27
(
7
), pp.
286
298
.
2.
Koren
,
E.
, and
Torchilin
,
V. P.
,
2011
, “
Drug Carriers for Vascular Drug Delivery
,”
IUBMB Life
,
63
(
8
), pp.
586
595
.
3.
Muzykantov
,
V. R.
,
2005
, “
Biomedical Aspects of Targeted Delivery of Drugs to Pulmonary Endothelium
,”
Expert Opin. Drug Delivery
,
2
(
5
), pp.
909
926
.
4.
Muzykantov
,
V. R.
,
2013
, “
Targeted Drug Delivery to Endothelial Adhesion Molecules
,”
ISRN Vasc. Med.
,
2013
, p. 27.
5.
Ham
,
A. S. W.
,
Goetz
,
D. J.
,
Klibanov
,
A. L.
, and
Lawrence
,
M. B.
,
2007
, “
Microparticle Adhesive Dynamics and Rolling Mediated by Selectin-Specific Antibodies Under Flow
,”
Biotechnol. Bioeng.
,
96
(
3
), pp.
596
607
.
6.
Verdier
,
C.
,
Duperray
,
A.
, and
Singh
,
P.
,
2009
, “
Modeling Cell Interactions Under Flow
,”
J. Math. Biol.
,
58
(
1–2
), p.
235
.
7.
Fromen
,
C. A.
,
Fish
,
M. B.
,
Zimmerman
,
A.
,
Adili
,
R.
,
Holinstat
,
M.
, and
Eniola-Adefeso
,
O.
,
2016
, “
Evaluation of Receptor-Ligand Mechanisms of Dual-Targeted Particles to an Inflamed Endothelium
,”
Bioeng. Transl. Med.
,
1
(
1
), pp.
103
115
.
8.
Decuzzi
,
P.
, and
Ferrari
,
M.
,
2008
, “
Design Maps for Nanoparticles Targeting the Diseased Microvasculature
,”
Biomaterials
,
29
(
3
), pp.
377
384
.
9.
Orsello
,
C. E.
,
Lauffenburger
,
D. A.
, and
Hammer
,
D. A.
,
2001
, “
Molecular Properties in Cell Adhesion: A Physical and Engineering Perspective
,”
TRENDS Biotechnol.
,
19
(
8
), pp.
310
316
.
10.
Lawrence
,
M. B.
, and
Springer
,
T. A.
,
1991
, “
Leukocytes Roll on a Selectin at Physiologic Flow Rates: Distinction From and Prerequisite for Adhesion Through Integrins
,”
Cell
,
65
(
5
), pp.
859
873
.
11.
Hammer
,
D. A.
, and
Apte
,
S. M.
,
1992
, “
Simulation of Cell Rolling and Adhesion on Surfaces in Shear Flow: General Results and Analysis of Selectin-Mediated Neutrophil Adhesion
,”
Biophys. J.
,
63
(
1
), pp.
35
57
.
12.
Zhao
,
Y.
,
Chien
,
S.
, and
Skalak
,
R.
,
1995
, “
A Stochastic Model of Leukocyte Rolling
,”
Biophys. J.
,
69
(
4
), pp.
1309
1320
.
13.
Zhang
,
Y.
, and
Neelamegham
,
S.
,
2002
, “
Estimating the Efficiency of Cell Capture and Arrest in Flow Chambers: Study of Neutrophil Binding Via E-Selectin and ICAM-1
,”
Biophys. J.
,
83
(
4
), pp.
1934
1952
.
14.
Dong
,
C.
, and
Lei
,
X. X.
,
2000
, “
Biomechanics of Cell Rolling: Shear Flow, Cell-Surface Adhesion, and Cell Deformability
,”
J. Biomech.
,
33
(
1
), pp.
35
43
.
15.
Korn
,
C.
, and
Schwarz
,
U.
,
2008
, “
Dynamic States of Cells Adhering in Shear Flow: From Slipping to Rolling
,”
Phys. Rev. E
,
77
(
4 Pt 1
), p.
041904
.
16.
Chang
,
K.-C.
, and
Hammer
,
D. A.
,
1996
, “
Influence of Direction and Type of Applied Force on the Detachment of Macromolecularly-Bound Particles From Surfaces
,”
Langmuir
,
12
(
9
), pp.
2271
2282
.
17.
Kuo
,
S. C.
,
Hammer
,
D. A.
, and
Lauffenburger
,
D. A.
,
1997
, “
Simulation of Detachment of Specifically Bound Particles From Surfaces by Shear Flow
,”
Biophys. J.
,
73
(
1
), pp.
517
531
.
18.
Chang
,
K.-C.
,
Tees
,
D. F.
, and
Hammer
,
D. A.
,
2000
, “
The State Diagram for Cell Adhesion Under Flow: Leukocyte Rolling and Firm Adhesion
,”
Proc. Natl. Acad. Sci.
,
97
(
21
), pp.
11262
11267
.
19.
Goldman
,
A. J.
,
Cox
,
R. G.
, and
Brenner
,
H.
,
1967
, “
Slow Viscous Motion of a Sphere Parallel to a Plane Wall—I: Motion Through a Quiescent Fluid
,”
Chem. Eng. Sci.
,
22
(
4
), pp.
637
651
.
20.
Goldman
,
A.
,
Cox
,
R.
, and
Brenner
,
H.
,
1967
, “
Slow Viscous Motion of a Sphere Parallel to a Plane Wall—II: Couette Flow
,”
Chem. Eng. Sci.
,
22
(
4
), pp.
653
660
.
21.
Falade
,
A.
,
1986
, “
Hydrodynamic Resistance of an Arbitrary Particle Translating and Rotating Near a Fluid Interface
,”
Int. J. Multiphase Flow
,
12
(
5
), pp.
807
837
.
22.
Danov
,
K.
,
Gurkov
,
T.
,
Raszillier
,
H.
, and
Durst
,
F.
,
1998
, “
Stokes Flow Caused by the Motion of a Rigid Sphere Close to a Viscous Interface
,”
Chem. Eng. Sci.
,
53
(
19
), pp.
3413
3434
.
23.
Urzay
,
J.
,
2010
, “
Asymptotic Theory of the Elastohydrodynamic Adhesion and Gliding Motion of a Solid Particle Over Soft and Sticky Substrates at Low Reynolds Numbers
,”
J. Fluid Mech.
,
653
, pp.
391
429
.
24.
Salez
,
T.
, and
Mahadevan
,
L.
,
2015
, “
Elastohydrodynamics of a Sliding, Spinning and Sedimenting Cylinder Near a Soft Wall
,”
J. Fluid Mech.
,
779
, pp.
181
196
.
25.
Yang
,
S.-M.
, and
Leal
,
L. G.
,
1984
, “
Particle Motion in Stokes Flow Near a Plane Fluid–Fluid Interface—Part 2: Linear Shear and Axisymmetric Straining Flows
,”
J. Fluid Mech.
,
149
(
1
), pp.
275
304
.
26.
Pozrikidis
,
C.
,
2007
, “
Particle Motion Near and Inside an Interface
,”
J. Fluid Mech.
,
575
pp.
333
357
.
27.
Eigen
,
M.
,
1974
, “
Diffusion Control in Biochemical Reactions
,”
Quantum Statistical Mechanics in the Natural Sciences
,
Springer
, New York, pp.
37
61
.
28.
Walcott
,
S.
,
Kim
,
D.-H.
,
Wirtz
,
D.
, and
Sun
,
S. X.
,
2011
, “
Nucleation and Decay Initiation Are the Stiffness-Sensitive Phases of Focal Adhesion Maturation
,”
Biophys. J.
,
101
(
12
), pp.
2919
2928
.
29.
Sawant
,
R. R.
, and
Torchilin
,
V. P.
,
2012
, “
Challenges in Development of Targeted Liposomal Therapeutics
,”
AAPS J.
,
14
(
2
), pp.
303
315
.
30.
Albanese
,
A.
,
Tang
,
P. S.
, and
Chan
,
W. C.
,
2012
, “
The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
1
16
.
31.
Allen
,
T. M.
,
2002
, “
Ligand-Targeted Therapeutics in Anticancer Therapy
,”
Nat. Rev. Cancer
,
2
(
10
), p.
750
.
32.
Saul
,
J. M.
,
Annapragada
,
A.
,
Natarajan
,
J. V.
, and
Bellamkonda
,
R. V.
,
2003
, “
Controlled Targeting of Liposomal Doxorubicin Via the Folate Receptor In Vivo
,”
J. Controlled Release
,
92
(
1–2
), pp.
49
67
.
33.
Elias
,
D. R.
,
Poloukhtine
,
A.
,
Popik
,
V.
, and
Tsourkas
,
A.
,
2013
, “
Effect of Ligand Density, Receptor Density, and Nanoparticle Size on Cell Targeting
,”
Nanomed.: Nanotechnol. Biol. Med.
,
9
(
2
), pp.
194
201
.
34.
Hammer
,
D. A.
, and
Lauffenburger
,
D. A.
,
1987
, “
A Dynamical Model for Receptor-Mediated Cell Adhesion to Surfaces
,”
Biophys. J.
,
52
(
3
), p.
475
.
35.
Hammer
,
D.
,
1987
, “
An Analysis of Receptor-Mediated Cell Adhesion Under Conditions of Flow
,” Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.
36.
Zhu
,
C.
,
1991
, “
A Thermodynamic and Biomechanical Theory of Cell Adhesion—Part I: General Formulism
,”
J. Theor. Biol.
,
150
(
1
), pp.
27
50
.
37.
Bell
,
G. I.
,
1978
, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
,
200
(
4342
), pp.
618
627
.
38.
Zhu
,
C.
,
Lou
,
J.
, and
McEver
,
R. P.
,
2005
, “
Catch Bonds: Physical Models, Structural Bases, Biological Function and Rheological Relevance
,”
Biorheology
,
42
(
6
), pp.
443
462
.https://content.iospress.com/articles/biorheology/bir378
39.
Pereverzev
,
Y. V.
,
Prezhdo
,
O. V.
,
Forero
,
M.
,
Sokurenko
,
E. V.
, and
Thomas
,
W. E.
,
2005
, “
The Two-Pathway Model for the Catch-Slip Transition in Biological Adhesion
,”
Biophys. J.
,
89
(
3
), pp.
1446
1454
.
40.
Prezhdo
,
O. V.
, and
Pereverzev
,
Y. V.
,
2009
, “
Theoretical Aspects of the Biological Catch Bond
,”
Acc. Chem. Res.
,
42
(
6
), pp.
693
703
.
41.
Novikova
,
E. A.
, and
Storm
,
C.
,
2013
, “
Contractile Fibers and Catch-Bond Clusters: A Biological Force Sensor
,”
Biophys. J.
,
105
(
6
), pp.
1336
1345
.
42.
Sun
,
L.
,
Cheng
,
Q.
,
Gao
,
H.
, and
Zhang
,
Y.
,
2011
, “
Effect of Loading Conditions on the Dissociation Behaviour of Catch Bond Clusters
,”
J. R. Soc. Interface
,
9
(70), pp. 928–937.
43.
Axelrod
,
D.
,
Wight
,
A.
,
Webb
,
W.
, and
Horwitz
,
A.
,
1978
, “
Influence of Membrane Lipids on Acetylcholine Receptor and Lipid Probe Diffusion in Cultured Myotube Membrane
,”
Biochemistry
,
17
(
17
), pp.
3604
3609
.
44.
Jacobson
,
K.
,
O'Dell
,
D.
, and
August
,
J. T.
,
1984
, “
Lateral Diffusion of an 80,000-Dalton Glycoprotein in the Plasma Membrane of Murine Fibroblasts: Relationships to Cell Structure and Function
,”
J. Cell Biol.
,
99
(
5
), pp.
1624
1633
.
45.
Bell
,
G. I.
,
Dembo
,
M.
, and
Bongrand
,
P.
,
1984
, “
Cell Adhesion. Competition Between Nonspecific Repulsion and Specific Bonding
,”
Biophys. J.
,
45
(
6
), p.
1051
.
46.
Dembo
,
M.
,
Torney
,
D.
,
Saxman
,
K.
, and
Hammer
,
D.
,
1988
, “
The Reaction-Limited Kinetics of Membrane-to-Surface Adhesion and Detachment
,”
Proc. R. Soc. London B
,
234
(
1274
), pp.
55
83
.
47.
Hochmuth
,
R. M.
,
2000
, “
Micropipette Aspiration of Living Cells
,”
J. Biomech.
,
33
(
1
), pp.
15
22
.
48.
Gonzalez-Rodriguez
,
D.
,
Maddugoda
,
M. P.
,
Stefani
,
C.
,
Janel
,
S.
,
Lafont
,
F.
,
Cuvelier
,
D.
,
Lemichez
,
E.
, and
Brochard-Wyart
,
F.
,
2012
, “
Cellular Dewetting: Opening of Macroapertures in Endothelial Cells
,”
Phys. Rev. Lett.
,
108
(
21
), p.
218105
.
49.
Patil
,
V. R. S.
,
Campbell
,
C. J.
,
Yun
,
Y. H.
,
Slack
,
S. M.
, and
Goetz
,
D. J.
,
2001
, “
Particle Diameter Influences Adhesion Under Flow
,”
Biophys. J.
,
80
(
4
), pp.
1733
1743
.
50.
Sakhalkar
,
H. S.
,
Dalal
,
M. K.
,
Salem
,
A. K.
,
Ansari
,
R.
,
Fu
,
J.
,
Kiani
,
M. F.
,
Kurjiaka
,
D. T.
,
Hanes
,
J.
,
Shakesheff
,
K. M.
, and
Goetz
,
D. J.
,
2003
, “
Leukocyte-Inspired Biodegradable Particles That Selectively and Avidly Adhere to Inflamed Endothelium In Vivo and In Vivo
,”
Proc. Natl. Acad. Sci.
,
100
(
26
), pp.
15895
15900
.
51.
Sakhalkar
,
H. S.
,
Hanes
,
J.
,
Fu
,
J.
,
Benavides
,
U.
,
Malgor
,
R.
,
Borruso
,
C. L.
,
Kohn
,
L. D.
,
Kurjiaka
,
D. T.
, and
Goetz
,
D. J.
,
2005
, “
Enhanced Adhesion of Ligand-Conjugated Biodegradable Particles to Colitic Venules
,”
FASEB J.
,
19
(
7
), pp.
792
794
.
52.
Ehrhardt
,
C.
,
Kneuer
,
C.
, and
Bakowsky
,
U.
,
2004
, “
Selectins—An Emerging Target for Drug Delivery
,”
Adv. Drug Delivery Rev.
,
56
(
4
), pp.
527
549
.
53.
Lorenzon
,
P.
,
Vecile
,
E.
,
Nardon
,
E.
,
Ferrero
,
E.
,
Harlan
,
J.
,
Tedesco
,
F.
, and
Dobrina
,
A.
,
1998
, “
Endothelial Cell E- and P-Selectin and Vascular Cell Adhesion Molecule-1 Function as Signaling Receptors
,”
J. Cell Biol.
,
142
(
5
), pp.
1381
1391
.
54.
MacKay
,
J. L.
, and
Hammer
,
D. A.
,
2016
, “
Stiff Substrates Enhance Monocytic Cell Capture Through E-Selectin But Not P-Selectin
,”
Integr. Biol.
,
8
(
1
), pp.
62
72
.
55.
Moore
,
K. L.
,
Eaton
,
S. F.
,
Lyons
,
D. E.
,
Lichenstein
,
H. S.
,
Cummings
,
R. D.
, and
McEver
,
R. P.
,
1994
, “
The P-Selectin Glycoprotein Ligand From Human Neutrophils Displays Sialylated, Fucosylated, o-Linked Poly-n-Acetyllactosamine
,”
J. Biol. Chem.
,
269
(
37
), pp.
23318
23327
.http://www.jbc.org/content/269/37/23318
56.
Kendall
,
K.
,
1971
, “
The Adhesion and Surface Energy of Elastic Solids
,”
J. Phys. D
,
4
(
8
), p.
1186
.
57.
Abkarian
,
M.
, and
Viallat
,
A.
,
2005
, “
Dynamics of Vesicles in a Wall-Bounded Shear Flow
,”
Biophys. J.
,
89
(
2
), pp.
1055
1066
.
58.
Kraus
,
M.
,
Wintz
,
W.
,
Seifert
,
U.
, and
Lipowsky
,
R.
,
1996
, “
Fluid Vesicles in Shear Flow
,”
Phys. Rev. Lett.
,
77
(
17
), p.
3685
.
59.
Albersdörfer
,
A.
,
Feder
,
T.
, and
Sackmann
,
E.
,
1997
, “
Adhesion-Induced Domain Formation by Interplay of Long-Range Repulsion and Short-Range Attraction Force: A Model Membrane Study
,”
Biophys. J.
,
73
(
1
), pp.
245
257
.
60.
Sackmann
,
E.
, and
Bruinsma
,
R. F.
,
2002
, “
Cell Adhesion as Wetting Transition?
,”
Chem. Phys. Chem.
,
3
(
3
), pp.
262
269
.
61.
Weekley
,
S.
,
Waters
,
S.
, and
Jensen
,
O.
,
2006
, “
Transient Elastohydrodynamic Drag on a Particle Moving Near a Deformable Wall
,”
Q. J. Mech. Appl. Math.
,
59
(
2
), pp.
277
300
.
62.
Yi
,
X.
,
Shi
,
X.
, and
Gao
,
H.
,
2011
, “
Cellular Uptake of Elastic Nanoparticles
,”
Phys. Rev. Lett.
,
107
(
9
), p.
098101
.
You do not currently have access to this content.