Global models for the dynamics of coupled fluid compartments of the central nervous system (CNS) require simplified representations of the individual components which are both accurate and computationally efficient. This paper presents a one-dimensional model for computing the flow of cerebrospinal fluid (CSF) within the spinal subarachnoid space (SSAS) under the simplifying assumption that it consists of two coaxial tubes representing the spinal cord and the dura. A rigorous analysis of the first-order nonlinear system demonstrates that the system is elliptic-hyperbolic, and hence ill-posed, for some values of parameters, being hyperbolic otherwise. In addition, the system cannot be written in conservation-law form, and thus, an appropriate numerical approach is required, namely the path conservative approach. The designed computational algorithm is shown to be second-order accurate in both space and time, capable of handling strongly nonlinear discontinuities, and a method of coupling it with an unsteady inflow condition is presented. Such an approach is sufficiently rapid to be integrated into a global, closed-loop model for computing the dynamics of coupled fluid compartments of the CNS.

References

References
1.
Alperin
,
N.
,
Lee
,
S. H.
,
Mazda
,
M.
,
Hushek
,
S. G.
,
Roitberg
,
B.
,
Goddwin
,
J.
, and
Lichtor
,
T.
,
2005
, “
Evidence for the Importance of Extracranial Venous Flow in Patients With Idiopathic Intracranial Hypertension (IIH)
,”.
Acta Neurochir.
,
95
, pp.
129
132
.
2.
Zamboni
,
P.
,
Galeotti
,
R.
,
Menegatti
,
E.
,
Malagoni
,
A. M.
,
Tacconi
,
G.
,
Dall'Ara
,
S.
,
Bartolomei
,
I.
, and
Salvi
,
F.
,
2008
, “
Chronic Cerebrospinal Venous Insufficiency in Patients With Multiple Sclerosis
,”
J. Neurol., Neurosurg. Psychiatry
,
80
(
4
), pp.
392
399
.
3.
Zamboni
,
P.
,
Menegatti
,
E.
,
Weinstock-Guttman
,
B.
,
Schirda
,
C.
,
Cox
,
J. L.
,
Malagoni
,
A. M.
,
Hojanacki
,
D.
,
Kennedy
,
C.
,
Carl
,
E.
,
Dwyer
,
M. G.
,
Bergsland
,
N.
,
Galeotti
,
R.
,
Hussein
,
S.
,
Bartolomei
,
I.
,
Salvi
,
F.
, and
Zivadinov
,
R.
,
2009
, “
The Severity of Chronic Cerebrospinal Venous Insufficiency in Patients With Multiple Sclerosis is Related to Altered Cerebrospinal Fluid Dynamics
,”
Funct. Neurol.
,
3
(
3
), pp.
133
138
.https://www.functionalneurology.com/materiale_cic/440_XXIV_3/3879_severity/
4.
Müller
,
L. O.
, and
Toro
,
E. F.
,
2014
, “
A Global Multiscale Mathematical Model for the Human Circulation With Emphasis on the Venous System
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
7
), pp.
681
725
.
5.
Müller
,
L. O.
, and
Toro
,
E. F.
,
2014
, “
Enhanced Global Mathematical Model for Studying Cerebral Venous Blood Flow
,”
J. Biomech.
,
47
(
13
), pp.
3361
3372
.
6.
Toro
,
E. F.
,
Linninger
,
A. A.
,
Zhang
,
Q.
,
Müller
,
L. O.
,
Contarino
,
C.
,
Agarwal, N.
, and
Celant, M.
,
2017
, “
Multi-Compartment Cranio-Spinal Fluid Dynamics Coupled to the Systemic Circulation: Holistic Modelling Approach
,” (in preparation).
7.
Linninger
,
A. A.
,
Xenos
,
M.
,
Sweetman
,
B.
,
Ponkshe
,
S.
,
Guo
,
X.
, and
Penn
,
R.
,
2009
, “
A Mathematical Model of Blood, Cerebrospinal Fluid and Brain Dynamics
,”
J. Math. Biol.
,
59
(
6
), pp.
729
759
.
8.
Toro
,
E. F.
,
Müller
,
L. O.
,
Cristini
,
M.
,
Menegatti
,
E.
, and
Zamboni
,
P.
,
2015
, “
Impact of Jugular Vein Valve Function on Cerebral Venous Haemodynamics
,”
Curr. Neurovasc. Res.
,
12
(
4
), pp.
384
397
.
9.
Toro
,
E. F.
,
2016
, “
Brain Venous Haemodynamics, Neurological Diseases and Mathematical Modelling. A Review
,”
Appl. Math. Comput.
,
272
(2), pp.
542
579
.
10.
Pohl
,
D.
,
Rostasy
,
K.
,
Reiber
,
H.
, and
Hanefeld
,
F.
,
2004
, “
CSF Characteristics in Early-Onset Multiple Sclerosis
,”
Neurology
,
63
(
10
), pp.
1966
1967
.
11.
Magnano
,
C.
,
Schirda
,
C.
,
Weinstock-Guttman
,
B.
,
Wack
,
D. S.
,
Lindzen
,
E.
,
Hojnacki
,
D.
,
Bergsland
,
N.
,
Kennedy
,
C.
,
Belov
,
P.
,
Dwyer
,
M. G.
,
Poloni
,
G. U.
,
Beggs
,
C. B.
, and
Zivadinov
,
R.
,
2012
, “
Cine Cerebrospinal Fluid Imaging in Multiple Sclerosis
,”
J. Magn. Reson. Imaging: JMRI
,
36
(
4
), pp.
825
834
.
12.
Linninger
,
A. A.
,
Tangen
,
K.
,
Hsu
,
C.-Y.
, and
Frim
,
D.
,
2016
, “
Cerebrospinal Fluid Mechanics and Its Coupling to Cerebrovascular Dynamics
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
219
257
.
13.
Leung
,
V.
,
Magnussen
,
J. S.
,
Stoodley
,
M. A.
, and
Bilston
,
L. E.
,
2016
, “
Cerebellar and Hindbrain Motion in Chiari Malformation With and Without Syringomyelia
,”
J. Neurosurg. Spine
,
24
(
4
), pp.
546
555
.
14.
Sakushima
,
K.
,
Tsuboi
,
S.
,
Yabe
,
I.
,
Hida
,
K.
,
Terae
,
S.
,
Uehara
,
R.
,
Nakano
,
I.
, and
Sasaki
,
H.
,
2012
, “
Nationwide Survey on the Epidemiology of Syringomyelia in japan
,”
J. Neurol. Sci.
,
313
(
1–2
), pp.
147
152
.
15.
Elliott
,
N.
,
Bertram
,
C.
,
Martin
,
B. A.
, and
Brodbelt
,
A.
,
2013
, “
Syringomyelia: A Review of the Biomechanics
,”
J. Fluids Struct.
,
40
, pp.
1
24
.
16.
Williams
,
B.
,
1980
, “
On the Pathogenesis of Syringomyelia: A Review
,”
J. R. Soc. Med.
,
73
(
11
), p.
798
.
17.
Carpenter
,
P. W.
,
Berkouk
,
K.
, and
Lucey
,
A. D.
,
2003
, “
Pressure Wave Propagation in Fluid-Filled Co-Axial Elastic Tubes—Part 2: Mechanisms for the Pathogenesis of Syringomyelia
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
857
863
.
18.
Cirovic
,
S.
,
2009
, “
A Coaxial Tube Model of the Cerebrospinal Fluid Pulse Propagation in the Spinal Column
,”
ASME J. Biomech. Eng.
,
131
(
2
), p.
021008
.
19.
Bertram
,
C.
,
2010
, “
Evaluation by Fluid/Structure-Interaction Spinal-Cord Simulation of the Effects of Subarachnoid-Space Stenosis on an Adjacent Syrinx
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061009
.
20.
Bilston
,
L. E.
,
Stoodley
,
M. A.
, and
Fletcher
,
D. F.
,
2010
, “
The Influence of the Relative Timing of Arterial and Subarachnoid Space Pulse Waves on Spinal Perivascular Cerebrospinal Fluid Flow as a Possible Factor in Syrinx Development: Laboratory Investigation
,”
J. Neurosurg.
,
112
(
4
), pp.
808
813
.
21.
Elliott
,
N.
,
2012
, “
Syrinx Fluid Transport: Modeling Pressure-Wave-Induced Flux Across the Spinal Pial Membrane
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031006
.
22.
Bertram
,
C.
,
2009
, “
A Numerical Investigation of Waves Propagating in the Spinal Cord and Subarachnoid Space in the Presence of a Syrinx
,”
J. Fluids Struct.
,
25
(
7
), pp.
1189
1205
.
23.
Strahle
,
J.
,
Muraszko
,
K. M.
,
Garton
,
H. J.
,
Smith
,
B. W.
,
Starr
,
J.
,
Kapurch
,
J. R.
, and
Maher
,
C. O.
,
2015
, “
Syrinx Location and Size According to Etiology: Identification of Chiari-Associated Syrinx
,”
J. Neurosurg.: Pediatr.
,
16
(
1
), pp.
21
29
.
24.
Cirovic
,
S.
, and
Kim
,
M.
,
2010
, “
One-Dimensional Model for Cerebrospinal Fluid Pulse in the Spinal Column
,”
Sixth World Congress of Biomechanics
(WCB), Singapore, Aug. 1–6, pp.
366
369
.
25.
Cirovic
,
S.
, and
Kim
,
M.
,
2012
, “
A One-Dimensional Model of the Spinal Cerebrospinal-Fluid Compartment
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021005
.
26.
Kim
,
M.
, and
Cirovic
,
S.
,
2011
, “
A Computational Model of the Cerebrospinal Fluid System Incorporating Lumped-Parameter Cranial Compartment and One-Dimensional Distributed Spinal Compartment
,”
J. Biorheol.
,
25
(
1–2
), pp.
78
87
.
27.
Martin
,
B. A.
,
Reymond
,
P.
,
Novy
,
J.
,
Balédent
,
O.
, and
Stergiopulos
,
N.
,
2012
, “
A Coupled Hydrodynamic Model of the Cardiovascular and Cerebrospinal Fluid System
,”
Am. J. Physiol. -Heart Circ. Physiol.
,
302
(
7
), pp.
H1492
H1509
.
28.
Bertram
,
C.
,
Brodbelt
,
A.
, and
Stoodley
,
M.
,
2005
, “
The Origins of Syringomyelia: Numerical Models of Fluid/Structure Interactions in the Spinal Cord
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1099
1109
.
29.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
,
2001
, “
Hydrodynamic Modeling of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
71
79
.
30.
Clarke
,
E. C.
,
Fletcher
,
D. F.
,
Stoodley
,
M. A.
, and
Bilston
,
L. E.
,
2013
, “
Computational Fluid Dynamics Modelling of Cerebrospinal Fluid Pressure in Chiari Malformation and Syringomyelia
,”
J. Biomech.
,
46
(
11
), pp.
1801
1809
.
31.
Cheng
,
S.
,
Fletcher
,
D.
,
Hemley
,
S.
,
Stoodley
,
M.
, and
Bilston
,
L.
,
2014
, “
Effects of Fluid Structure Interaction in a Three Dimensional Model of the Spinal Subarachnoid Space
,”
J. Biomech.
,
47
(
11
), pp.
2826
2830
.
32.
Heidari Pahlavian
,
S.
,
Yiallourou
,
T.
,
Tubbs
,
R. S.
,
Bunck
,
A. C.
,
Loth
,
F.
,
Goodin
,
M.
,
Raisee
,
M.
, and
Martin
,
B. A.
,
2014
, “
The Impact of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine
,”
PLoS One
,
9
(
4
), pp.
1
14
.
33.
Sweetman
,
B.
, and
Linninger
,
A. A.
,
2011
, “
Cerebrospinal Fluid Flow Dynamics in the Central Nervous System
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
484
496
.
34.
Heidari Pahlavian
,
S.
,
Bunck
,
A. C.
,
Thyagaraj
,
S.
,
Giese
,
D.
,
Loth
,
F.
,
Hedderich
,
D. M.
,
Kröger
,
J. R.
, and
Martin
,
B. A.
,
2016
, “
Accuracy of 4D Flow Measurement of Cerebrospinal Fluid Dynamics in the Cervical Spine: An In Vitro Verification Against Numerical Simulation
,”
Ann. Biomed. Eng.
,
44
(11), pp.
1
13
.
35.
Toro
,
E. F.
,
2009
,
Riemann Solvers and Numerical Methods for Fluid Dynamics
,
3rd ed.
,
Springer
, Berlin.
36.
Stewart
,
H. B.
, and
Wendroff
,
B.
,
1984
, “
Two-Phase Flow: Models and Methods
,”
J. Comput. Phys.
,
56
(
3
), pp.
363
409
.
37.
Romenski
,
E.
, and
Toro
,
E. F.
,
2004
, “
Hyperbolicity and One-Dimensional Waves in Compressible Two-Phase Flow Models
,”
Shock Waves
,
13
(
6
), pp.
473
487
.
38.
Romenski
,
E.
,
Resnyanski
,
E. D.
, and
Toro
,
E. F.
,
2007
, “
Conservative Hyperbolic Formulation for Compressible Two-Phase Flow With Different Phase Pressures and Temperatures
,”
Q. Appl. Math.
,
65
(
2
), pp.
259
279
.
39.
Kumbaro
,
A.
, and
Ndjinga
,
M.
,
2011
, “
Influence of Interfacial Pressure Term on the Hyperbolicity of a General Multifluid Model
,”
J. Comput. Multiphase Flows
,
3
(
3
), pp.
177
195
.
40.
Castro
,
M. J.
,
Fernández-Nieto
,
E. D.
,
González-Vida
,
J. M.
, and
Parés-Madroñal
,
C.
,
2011
, “
Numerical Treatment of the Loss of Hyperbolicity of the Two-Layer Shallow-Water System
,”
J. Sci. Comput.
,
48
(
1–3
), pp.
16
40
.
41.
Chavarrías
,
V.
,
Stecca
,
G.
, and
Blom
,
A.
,
2018
, “
Ill-Posedness in Modeling Mixed Sediment River Morphodynamics
,”
Adv. Water Resour.
,
114
, pp.
219
235
.
42.
Lax
,
P.
,
1980
, “
On the Notion of Hyperbolicity
,”
Commun. Pure Appl. Math.
,
28
(
3
), pp.
395
397
.
43.
Scoz
,
A.
,
2018
, “
Analysis of Well Posedness of a Mathematical Model for Cerebrospinal Fluid in the Optic Nerve Conduit
,” Master's thesis, Department of Mathematics, University of Trento, Trento, Italy.
44.
Haughton
,
V. M.
,
Korosec
,
F. R.
,
Medow
,
J. E.
,
Dolar
,
M. T.
, and
Iskandar
,
B. J.
,
2003
, “
Peak Systolic and Diastolic CSF Velocity in the Foramen Magnum in Adult Patients With Chiari I Malformations and in Normal Control Participants
,”
Am. J. Neuroradiol.
,
24
(
2
), pp.
69
176
.http://www.ajnr.org/content/24/2/169.long
45.
Toro
,
E. F.
, and
Siviglia
,
A.
,
2003
, “
Price: Primitive Centred Schemes for Hyperbolic Systems
,”
Int. J. Numer. Meth. Fluids
,
42
(
12
), pp.
1263
1291
.
46.
Godunov
,
S. K.
,
1959
, “
A Finite Difference Method for the Computation of Discontinuous Solutions of the Equations of Fluid Dynamics
,”
Sb.: Math.
,
47
(89), pp.
357
393
.
47.
Toro
,
E. F.
,
Millington
,
R. C.
, and
Nejad
,
L. A. M.
,
2001
, “
Towards Very High–Order Godunov Schemes
,”
Godunov Methods: Theory and Applications
,
E. F.
Toro
, ed.,
Kluwer Academic/Plenum Publishers
,
New York
, pp.
905
937
.
48.
Parés
,
C.
,
2006
, “
Numerical Methods for Nonconservative Hyperbolic Systems: A Theoretical Framework
,”
SIAM J. Numer. Anal.
,
44
(
1
), pp.
300
321
.
49.
Castro
,
C. E.
, and
Toro
,
E. F.
,
2014
, “
Roe-Type Riemann Solvers for General Hyperbolic Systems
,”
Int. J. Numer. Methods Fluids
,
75
(
7
), pp.
467
486
.
50.
Dumbser
,
M.
, and
Toro
,
E. F.
,
2011
, “
A Simple Extension of the Osher Riemann Solver to Non-Conservative Hyperbolic Systems
,”
J. Sci. Comput.
,
48
(
1–3
), pp.
70
88
.
51.
Dumbser
,
M.
, and
Toro
,
E. F.
,
2011
, “
On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws
,”
Commun. Comput. Phys.
,
10
(
3
), pp.
635
671
.
52.
Toro
,
E. F.
, and
Titarev
,
V. A.
,
2002
, “
Solution of the Generalised Riemann Problem for Advection–Reaction Equations
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
458
(
2018
), pp.
271
281
.
53.
Montecinos
,
G. I.
,
Castro
,
C. E.
,
Dumbser
,
M.
, and
Toro
,
E. F.
,
2012
, “
Comparison of Solvers for the Generalized Riemann Problem for Hyperbolic Systems With Source Terms
,”
J. Comput. Phys.
,
231
(
19
), pp.
6472
64943
.
54.
Dumbser
,
M.
,
Enaux
,
C.
, and
Toro
,
E. F.
,
2008
, “
Finite Volume Schemes of Very High Order of Accuracy for Stiff Hyperbolic Balance Laws
,”
J. Comput. Phys.
,
227
(
8
), pp.
3971
4001
.
55.
Toro
,
E. F.
, and
Montecinos
,
G. I.
,
2015
, “
Implicit, Semi-Analytical Solution of the Generalised Riemann Problem for Stiff Hyperbolic Balance Laws
,”
J. Comput. Phys.
,
303
, pp.
146
172
.
56.
Castro
,
C.
, and
Toro
,
E.
,
2008
, “
Solvers for the High-Order Riemann Problem for Hyperbolic Balance Laws
,”
J. Comput. Phys.
,
227
(
4
), pp.
2481
2513
.
57.
Harten
,
A.
,
Engquist
,
B.
,
Osher
,
S.
, and
Chakravarthy
,
S. R.
,
1997
, “
Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, Iii
,”
J. Comput. Phys.
,
131
(
1
), pp.
3
47
.
You do not currently have access to this content.