A probabilistic model predicts hip fracture probability for postflight male astronauts during lateral fall scenarios from various heights. A biomechanical representation of the hip provides impact load. Correlations relate spaceflight bone mineral density (BMD) loss and postflight BMD recovery to bone strength (BS). Translations convert fracture risk index (FRI), the ratio of applied load (AL) to BS, to fracture probability. Parameter distributions capture uncertainty and Monte Carlo simulations provide probability outcomes. The fracture probability for a 1 m fall 0 days postflight is 15% greater than preflight and remains 6% greater than pre-flight at 365 days postflight. Probability quantification provides insight into how spaceflight induced BMD loss affects fracture probability. A bone loss rate reflecting improved exercise countermeasures and dietary intake further reduces the postflight fracture probability to 6% greater than preflight at 0 days postflight and 2% greater at 365 days postflight. Quantification informs assessments of countermeasure effectiveness. When preflight BMD is one standard deviation below mean astronaut preflight BMD, fracture probability at 0 days postflight is 34% greater than the preflight fracture probability calculated with mean BMD and 28% greater at 365 days postflight. Quantification aids review of astronaut BMD fitness for duty standards. Increases in postflight fracture probability are associated with an estimated 18% reduction in postflight BS. Therefore, a 0.82 deconditioning coefficient modifies force application limits for crew vehicles.

References

References
1.
Jennings
,
R. T.
, and
Bagian
,
J. P.
,
1996
, “
Musculoskeletal Injury Review in the U.S. Space Program
,”
Aviat. Space. Environ. Med.
,
67
(
8
), pp.
762
766
.https://www.ncbi.nlm.nih.gov/pubmed/8853833
2.
Scheuring
,
R. A.
,
Mathers
,
C. H.
,
Jones
,
J. A.
, and
Wear
,
M. L.
,
2009
, “
Musculoskeletal Injuries and Minor Trauma in Space: Incidence and Injury Mechanisms in U.S. Astronauts
,”
Aviat. Space. Environ. Med.
,
80
(
2
), pp.
117
124
.
3.
Keenan
,
A.
,
Young
,
M.
,
Saile
,
L.
,
Boley
,
L.
,
Walton
,
M.
,
Kerstman
,
E.
,
Shah
,
R.
,
Goodenow
,
D.
, and
Myers
,
J.
,
2015
, “
The Integrated Medical Model: A Probabilistic Simulation Model Predicting in-Flight Medical Risks
,”
45th International Conference on Environmental Systems, Paper No. ICES-2015-71
.
4.
Watkins
,
S.
,
2010
, “
Space Medicine Exploration: Full Medical Condition List
,” National Aeronautics and Space Administration Johnson Space Center, Houston, TX, Report No. NASA/TP-2010-216118.
5.
Gilkey
,
K.
,
McRae
,
M.
,
Griffin
,
E.
,
Kalluri
,
A.
, and
Myers
,
J.
,
2012
, “
Bayesian Analysis for Risk Assessment of Selected Medical Events in Support of the Integrated Medical Model Effort
,” National Aeronautics and Space Administration Glenn Research Center, Cleveland, OH, Report No.
NASA/TP-2012-217120
.https://ntrs.nasa.gov/search.jsp?R=20120013096
6.
Nelson
,
E. S.
,
Lewandowski
,
B.
,
Licata
,
A.
, and
Myers
,
J. G.
,
2009
, “
Development and Validation of a Predictive Bone Fracture Risk Model for Astronauts
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2337
2359
.
7.
Weaver
,
A. S.
,
Zakrajsek
,
A. D.
,
Lewandowski
,
B. E.
,
Brooker
,
J. E.
, and
Myers
,
J. G.
,
2013
, “
Predicting Head Injury Risk During International Space Station Increments
,”
Aviat. Space. Environ. Med.
,
84
(
1
), pp.
38
46
.
8.
Hayes
,
W. C.
, and
Myers
,
E. R.
,
1997
, “
Biomechanical Considerations of Hip and Spine Fractures in Osteoporotic Bone
,”
Instr. Course Lect.
,
46
, pp.
431
438
.http://www.ncbi.nlm.nih.gov/pubmed/9143985
9.
LeBlanc
,
A.
,
Schneider
,
V.
,
Shackelford
,
L.
,
West
,
S.
,
Oganov
,
V.
,
Bakulin
,
A.
, and
Voronin
,
L.
,
2000
, “
Bone Mineral and Lean Tissue Loss After Long Duration Space Flight
,”
J. Musculoskeletal Neuronal Interact.
,
1
(
2
), pp.
157
160
.http://www.ismni.org/jmni/pdf/2/leblanc.pdf
10.
Smith
,
S. M.
,
Heer
,
M. A.
,
Shackelford
,
L. C.
,
Sibonga
,
J. D.
,
Ploutz-snyder
,
L.
, and
Zwart
,
S. R.
,
2012
, “
Benefits for Bone From Resistance Exercise and Nutrition Biochemistry and Densitometry
,”
J. Bone Miner. Res.
,
27
(
9
), pp.
1896
1906
.
11.
Sibonga
,
J. D.
,
Evans
,
H. J.
,
Sung
,
H. G.
,
Spector
,
E. R.
,
Lang
,
T. F.
,
Oganov
,
V. S.
,
Bakulin
,
A. V.
,
Shackelford
,
L. C.
, and
LeBlanc
,
A. D.
,
2007
, “
Recovery of Spaceflight-Induced Bone Loss: Bone Mineral Density After Long-Duration Missions as Fitted With an Exponential Function
,”
Bone
,
41
(
6
), pp.
973
978
.
12.
Stamatelatos
,
M.
, and
Dezfuli
,
H.
,
2011
, “
Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners
,” National Aeronautics and Space Administration Headquarters, Washington, DC, Report No. NASA/SP-2011-3421.
13.
Vesely
,
W.
,
Stamatelatos
,
M.
,
Dugan
,
J.
,
Fragola
,
J.
,
Minarick
,
J.
, and
Railsback
,
J.
,
2002
, “
Fault Tree Handbook With Aerospace Applications
,” National Aeronautics and Space Administration, Washington, DC.
14.
Robinovitch
,
S. N.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1991
, “
Prediction of Femoral Impact Forces in Falls on the Hip
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
366
374
.
15.
Robinovitch
,
S. N.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1997
, “
Distribution of Contact Force During Impact to the Hip
,”
Ann. Biomed. Eng.
,
25
(
3
), pp.
499
508
.
16.
Maıoun
,
L.
,
Fattal
,
C.
,
Micallef
,
J.-P.
,
Peruchon
,
E.
, and
Rabischong
,
P.
,
2006
, “
Bone Loss in Spinal Cord-Injured Patients: From Physiopathology to Therapy
,”
Spinal Cord
,
44
(
4
), pp.
203
210
.
17.
Cummings
,
S. R.
,
Karpf
,
D. B.
,
Harris
,
F.
,
Genant
,
H. K.
,
Ensrud
,
K.
,
LaCroix
,
A. Z.
, and
Black
,
D. M.
,
2002
, “
Improvement in Spine Bone Density and Reduction in Risk of Vertebral Fractures During Treatment With Antiresorptive Drugs
,”
Am. J. Med.
,
112
(
4
), pp.
281
289
.
18.
Cheng
,
X. G.
,
Lowet
,
G.
,
Boonen
,
S.
,
Nicholson
,
P. H.
,
Van der Perre
,
G.
, and
Dequeker
,
J.
,
1998
, “
Prediction of Vertebral and Femoral Strength In Vitro by Bone Mineral Density Measured at Different Skeletal Sites
,”
J. Bone Miner. Res.
,
13
(
9
), pp.
1439
1443
.
19.
Bauer
,
J. S.
,
Kohlmann
,
S.
,
Eckstein
,
F.
,
Mueller
,
D.
,
Lochmüller
,
E. M.
, and
Link
,
T. M.
,
2006
, “
Structural Analysis of Trabecular Bone of the Proximal Femur Using Multislice Computed Tomography: A Comparison With Dual X-Ray Absorptiometry for Predicting Biomechanical Strength In Vitro
,”
Calcif. Tissue Int.
,
78
(
2
), pp.
78
89
.
20.
Grote
,
S.
,
Noeldeke
,
T.
,
Blauth
,
M.
,
Mutschler
,
W.
, and
Bürklein
,
D.
,
2013
, “
Mechanical Torque Measurement in the Proximal Femur Correlates to Failure Load and Bone Mineral Density Ex Vivo
,”
Orthop. Rev. (Pavia).
,
5
(
2
), pp.
77
81
.
21.
Zysset
,
P.
,
Qin
,
L.
,
Lang
,
T.
,
Khosla
,
S.
,
Leslie
,
W. D.
,
Shepherd
,
J. A.
,
Schousboe
,
J. T.
, and
Engelke
,
K.
,
2015
, “
Clinical Use of Quantitative Computed Tomography-Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults: The 2015 ISCD Official Positions—Part II
,”
J. Clin. Densitom.
,
18
(
3
), pp.
359
392
.
22.
Cody
,
D. D.
,
Gross
,
G. J.
,
J. Hou
,
F.
,
Spencer
,
H. J.
,
Goldstein
,
S. A.
, and
P. Fyhrie
,
D.
,
1999
, “
Femoral Strength Is Better Predicted by Finite Element Models Than QCT and DXA
,”
J. Biomech.
,
32
(
10
), pp.
1013
1020
.
23.
NASA
,
2015
, “
NASA Space Flight Human-System Standard Volume 1, Revision A: Crew Health
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA-STD-3001.
24.
Ott
,
S.
,
2006
, “
Osteoporosis and Bone Physiology
,” University of Washington, Seatle, WA, accessed Aug. 24, 2018, http://courses.washington.edu/bonephys/opbmdtz.html
25.
Kanis
,
J. A.
,
Johnell
,
O.
,
Oden
,
A.
,
Johansson
,
H.
, and
McCloskey
,
E.
,
2008
, “
FRAX and the Assessment of Fracture Probability in Men and Women From the UK
,”
Osteoporos. Int.
,
19
(
4
), pp.
385
397
.
26.
Watts
,
N. B.
,
2011
, “
The Fracture Risk Assessment Tool (FRAX®): Applications in Clinical Practice
,”
J. Womens. Health (Larchmt).
,
20
(
4
), pp.
525
531
.
27.
Black
,
D. M.
,
Steinbuch
,
M.
,
Palermo
,
L.
,
Dargent-Molina
,
P.
,
Lindsay
,
R.
,
Hoseyni
,
M. S.
, and
Johnell
,
O.
,
2001
, “
An Assessment Tool for Predicting Fracture Risk in Postmenopausal Women
,”
Osteoporos. Int.
,
12
(
7
), pp.
519
528
.
28.
Chao
,
A.-S.
,
Chen
,
F.-P.
,
Lin
,
Y.-C.
,
Huang
,
T.-S.
,
Fan
,
C.-M.
, and
Yu
,
Y.-W.
,
2015
, “
Application of the World Health Organization Fracture Risk Assessment Tool to Predict Need for Dual-Energy X-Ray Absorptiometry Scanning in Postmenopausal Women
,”
Taiwan. J. Obstet. Gynecol.
,
54
(
6
), pp.
722
725
.
29.
Wainwright
,
S. A.
,
Marshall
,
L. M.
,
Ensrud
,
K. E.
,
Cauley
,
J. A.
,
Black
,
D. M.
,
Hillier
,
T. A.
,
Hochberg
,
M. C.
,
Vogt
,
M. T.
, and
Orwoll
,
E. S.
,
2005
, “
Hip Fracture in Women Without Osteoporosis
,”
J. Clin. Endocrinol. Metab.
,
90
(
5
), pp.
2787
2793
.
30.
Dufour
,
A. B.
,
Roberts
,
B.
,
Broe
,
K. E.
,
Kiel
,
D. P.
,
Bouxsein
,
M. L.
, and
Hannan
,
M. T.
,
2012
, “
The Factor-of-Risk Biomechanical Approach Predicts Hip Fracture in Men and Women: The Framingham Study
,”
Osteoporos. Int.
,
23
(
2
), pp.
513
520
.
31.
Keyak
,
J. H.
,
Koyama
,
A. K.
,
LeBlanc
,
A.
,
Lu
,
Y.
, and
Lang
,
T. F.
,
2009
, “
Reduction in Proximal Femoral Strength Due to Long-Duration Spaceflight
,”
Bone
,
44
(
3
), pp.
449
453
.
32.
Nielson
,
C. M.
,
Bouxsein
,
M. L.
,
Freitas
,
S. S.
,
Ensrud
,
K. E.
, and
Orwoll
,
E. S.
,
2009
, “
Trochanteric Soft Tissue Thickness and Hip Fracture in Older Men
,”
J. Clin. Endocrinol. Metab.
,
94
(
2
), pp.
491
496
.
33.
Bouxsein
,
M. L.
,
Szulc
,
P.
,
Munoz
,
F.
,
Thrall
,
E.
,
Sornay-Rendu
,
E.
, and
Delmas
,
P. D.
,
2007
, “
Contribution of Trochanteric Soft Tissues to Fall Force Estimates, the Factor of Risk, and Prediction of Hip Fracture Risk
,”
J. Bone Miner. Res.
,
22
(
6
), pp.
825
831
.
34.
Davidson
,
P. L.
,
Chalmers
,
D. J.
, and
Stephenson
,
S. C.
,
2006
, “
Prediction of Distal Radius Fracture in Children, Using a Biomechanical Impact Model and Case-Control Data on Playground Free Falls
,”
J. Biomech.
,
39
(
3
), pp.
503
509
.
35.
McDowall
,
L. M.
, and
Dampney
,
R. A. L.
,
2006
, “
Calculation of Threshold and Saturation Points of Sigmoidal Baroreflex Function Curves
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
(
4
), pp.
H2003
H2007
.
36.
Johnson
,
R.
,
2011
,
Miller & Freund's Probability and Statistics for Engineers
,
Pearson Education
,
Boston, MA
.
37.
Marino
,
S.
,
Hogue
,
I. B.
,
Ray
,
C. J.
, and
Kirschner
,
D. E.
,
2008
, “
A Methodology for Performing Global Uncertainty and Sensitivity Analysis in Systems Biology
,”
J. Theor. Biol.
,
254
(
1
), pp.
178
196
.
38.
NASA,
2009
, “
Constellation Program Human-Systems Integration Requirements
,” National Aeronautics and Space Administration, Washington, DC, Report No.
CxP 70024
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120014522.pdf
39.
Brinkley
,
J.
, and
Shaffer
,
J.
,
1971
, “
Dynamic Simulation Techniques for the Design of Escape Systems: Current Applications and Future Air Force Requirements
,” Aerospace Medical Research Laboratory, Wright-Patterson, AFB, OH, Report No. AMRL-TR-71-29.
40.
Beck
,
T. J.
,
Ruff
,
C. B.
,
Warden
,
K. E.
,
Scott
,
W. W.
, and
Rao
,
G. U.
,
1990
, “
Predicting Femoral Neck Strength From Bone Mineral Data. A Structural Approach
,”
Invest. Radiol.
,
25
(
1
), pp.
6
18
.
41.
Roberts
,
B. J.
,
Thrall
,
E.
,
Muller
,
J. A.
, and
Bouxsein
,
M. L.
,
2010
, “
Comparison of Hip Fracture Risk Prediction by Femoral aBMD to Experimentally Measured Factor of Risk
,”
Bone
,
46
(
3
), pp.
742
746
.
42.
Lewiecki
,
E. M.
,
2005
, “
Clinical Applications of Bone Density Testing for Osteoporosis
,”
Minerva Medica
,
96
(
5
), pp.
317
330
.https://www.minervamedica.it/en/journals/minerva-medica/article.php?cod=R10Y2005N05A0317
43.
Broussard
,
D. L.
, and
Magnus
,
J. H.
,
2004
, “
Risk Assessment and Screening for Low Bone Mineral Density in a Multi-Ethnic Population of Women and Men: Does One Approach Fit All?
,”
Osteoporos. Int.
,
15
(
5
), pp.
349
360
.
44.
Sibonga
,
J. D.
,
2013
, “
Spaceflight-Induced Bone Loss: Is There an Osteoporosis Risk?
,”
Curr. Osteoporos. Rep.
,
11
(
2
), pp.
92
98
.
45.
Licata
,
2015
, “
Challenges of Estimating Fracture Risk With DXA: Changing Concepts About Bone Strength and Bone Density
,”
Aerosp. Med. Hum. Perform.
,
86
(
7
), pp. 628–632.
46.
Lang
,
T. F.
,
Leblanc
,
A. D.
,
Evans
,
H. J.
, and
Lu
,
Y.
,
2006
, “
Adaptation of the Proximal Femur to Skeletal Reloading After Long-Duration Spaceflight
,”
J. Bone Miner. Res.
,
21
(
8
), pp.
1224
1230
.
47.
Lang
,
T.
,
LeBlanc
,
A.
,
Evans
,
H.
,
Lu
,
Y.
,
Genant
,
H.
, and
Yu
,
A.
,
2004
, “
Cortical and Trabecular Bone Mineral Loss From the Spine and Hip in Long-Duration Spaceflight
,”
J. Bone Miner. Res.
,
19
(
6
), pp.
1006
1012
.
48.
Carpenter
,
D. R.
,
LeBlanc
,
A. D.
,
Evans
,
H.
,
Sibonga
,
J. D.
, and
Lang
,
T. F.
,
2010
, “
Long-Term Changes in the Density and Structure of the Human Hip and Spine After Long-Duration Spaceflight
,”
Acta Astronaut.
,
67
(
1–2
), pp.
71
81
.
You do not currently have access to this content.