The tricuspid valve is a one-way valve on the pulmonary side of the heart, which prevents backflow of blood during ventricular contractions. Development of computational models of the tricuspid valve is important both in understanding the normal valvular function and in the development/improvement of surgical procedures and medical devices. A key step in the development of such models is quantification of the mechanical properties of the tricuspid valve leaflets. In this study, after examining previously measured five-loading-protocol biaxial stress–strain response of porcine tricuspid valves, a phenomenological constitutive framework was chosen to represent this response. The material constants were quantified for all three leaflets, which were shown to be highly anisotropic with average anisotropy indices of less than 0.5 (an anisotropy index value of 1 indicates a perfectly isotropic response, whereas a smaller value of the anisotropy index indicates an anisotropic response). To obtain mean values of material constants, stress–strain responses of the leaflet samples were averaged and then fitted to the constitutive model (average R2 over 0.9). Since the sample thicknesses were not hugely different, averaging the data using the same tension levels and stress levels produced similar average material constants for each leaflet.

References

References
1.
Cooper
,
T.
,
Napolitano
,
L. M.
,
Fitzgerald
,
M. J. T.
,
Moore
,
K. E.
,
Daggett
,
W. M.
,
Willman
,
V. L.
,
Sonnenblick
,
E. H.
, and
Hanlon
,
C. R.
,
1966
, “
Structural Basis of Cardiac Valvar Function
,”
Arch. Surg.
,
93
(
5
), pp.
767
771
.
2.
Hall
,
J. E.
,
2010
,
Guyton and Hall Textbook of Medical Physiology
,
Elsevier Health Sciences
, Philadelphia, PA.
3.
Lauten
,
A.
,
Doenst
,
T.
,
Hamadanchi
,
A.
,
Franz
,
M.
, and
Figulla
,
H. R.
,
2014
, “
Percutaneous Bicaval Valve Implantation for Transcatheter Treatment of Tricuspid Regurgitation: Clinical Observations and 12-Month Follow-Up
,”
Circ.: Cardiovasc. Interventions
,
7
(
2
), pp.
268
272
.
4.
Rodés-Cabau
,
J.
,
Hahn
,
R. T.
,
Latib
,
A.
,
Laule
,
M.
,
Lauten
,
A.
,
Maisano
,
F.
,
Schofer
,
J.
,
Campelo-Parada
,
F.
,
Puri
,
R.
, and
Vahanian
,
A.
,
2016
, “
Transcatheter Therapies for Treating Tricuspid Regurgitation
,”
J. Am. Coll. Cardiol.
,
67
(
15
), pp.
1829
1845
.
5.
Vassileva
,
C. M.
,
Shabosky
,
J.
,
Boley
,
T.
,
Markwell
,
S.
, and
Hazelrigg
,
S.
,
2012
, “
Tricuspid Valve Surgery: The past 10 Years From the Nationwide Inpatient Sample (NIS) Database
,”
J. Thorac. Cardiovasc. Surg.
,
143
(
5
), pp.
1043
1049
.
6.
Guenther
,
T.
,
Noebauer
,
C.
,
Mazzitelli
,
D.
,
Busch
,
R.
,
Tassani-Prell
,
P.
, and
Lange
,
R.
,
2008
, “
Tricuspid Valve Surgery: A Thirty-Year Assessment of Early and Late Outcome
,”
Eur. J. Cardio-Thorac. Surg.
,
34
(
2
), pp.
402
409
.
7.
Kilic
,
A.
,
Saha-Chaudhuri
,
P.
,
Rankin
,
J. S.
, and
Conte
,
J. V.
,
2013
, “
Trends and Outcomes of Tricuspid Valve Surgery in North America: An Analysis of More Than 50,000 Patients From the Society of Thoracic Surgeons Database
,”
Ann. Thorac. Surg.
,
96
(
5
), pp.
1546
1552
.
8.
Singh
,
J. P.
,
Evans
,
J. C.
,
Levy
,
D.
,
Larson
,
M. G.
,
Freed
,
L. A.
,
Fuller
,
D. L.
,
Lehman
,
B.
, and
Benjamin
,
E. J.
,
1999
, “
Prevalence and Clinical Determinants of Mitral, Tricuspid, and Aortic Regurgitation (the Framingham Heart Study)
,”
Am. J. Cardiol.
,
83
(
6
), pp.
897
902
.
9.
Stuge
,
O.
, and
Liddicoat
,
J.
,
2006
, “
Emerging Opportunities for Cardiac Surgeons Within Structural Heart Disease
,”
J. Thorac. Cardiovasc. Surg.
,
132
(
6
), pp.
1258
1261
.
10.
Taramasso
,
M.
,
Vanermen
,
H.
,
Maisano
,
F.
,
Guidotti
,
A.
,
La Canna
,
G.
, and
Alfieri
,
O.
,
2012
, “
The Growing Clinical Importance of Secondary Tricuspid Regurgitation
,”
J. Am. Coll. Cardiol.
,
59
(
8
), pp.
703
710
.
11.
Rankin
,
J. S.
,
Hammill
,
B. G.
,
Ferguson
,
T. B.
,
Glower
,
D. D.
,
O'Brien
,
S. M.
,
DeLong
,
E. R.
,
Peterson
,
E. D.
, and
Edwards
,
F. H.
,
2006
, “
Determinants of Operative Mortality in Valvular Heart Surgery
,”
J. Thorac. Cardiovasc. Surg.
,
131
(
3
), pp.
547
557
.
12.
Hobson
,
C. M.
,
Amoroso
,
N. J.
,
Amini
,
R.
,
Ungchusri
,
E.
,
Hong
,
Y.
,
D'Amore
,
A.
,
Sacks
,
M. S.
, and
Wagner
,
W. R.
,
2015
, “
Fabrication of Elastomeric Scaffolds With Curvilinear Fibrous Structures for Heart Valve Leaflet Engineering
,”
J. Biomed. Mater. Res. Part A
,.
103
(9), pp. 3101–3106.
13.
Lee
,
C.-H.
,
Oomen
,
P. J. A.
,
Rabbah
,
J. P.
,
Yoganathan
,
A.
,
Gorman
,
R. C.
,
Gorman Iii
,
J. H.
,
Amini
,
R.
, and
Sacks
,
M. S.
, “
A High-Fidelity and Micro-Anatomically Accurate 3D Finite Element Model for Simulations of Functional Mitral Valve
,”
International Conference on Functional Imaging and Modeling of the Heart
, London, June 20–22, pp.
416
424
.
14.
Lee
,
C.-H.
,
Amini
,
R.
,
Sakamoto
,
Y.
,
Carruthers
,
C. A.
,
Aggarwal
,
A.
,
Gorman
,
R. C.
,
Gorman
,
I. I. I.,J. H.
, and
Sacks
,
M. S.
,
2015
, “
Mitral Valves: A Computational Framework
,”
Multiscale Modeling in Biomechanics and Mechanobiology
,
Springer
, London, pp.
223
255
.
15.
Stevanella
,
M.
,
Votta
,
E.
,
Lemma
,
M.
,
Antona
,
C.
, and
Redaelli
,
A.
,
2010
, “
Finite Element Modelling of the Tricuspid Valve: A Preliminary Study
,”
Med. Eng. Phys.
,
32
(
10
), pp.
1213
1223
.
16.
Pham
,
T.
,
Sulejmani
,
F.
,
Shin
,
E.
,
Wang
,
D.
, and
Sun
,
W.
,
2017
, “
Quantification and Comparison of the Mechanical Properties of Four Human Cardiac Valves
,”
Acta Biomater.
,
54
, pp. 345–355.
17.
May-Newman
,
K.
, and
Yin
,
F. C.
,
1995
, “
Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets
,”
Am. J. Physiol.
,
269
(
4
), pp.
H1319
–H
1327
.
18.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.
19.
Grashow
,
J. S.
,
Yoganathan
,
A. P.
, and
Sacks
,
M. S.
,
2006
, “
Biaixal Stress–Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates
,”
Ann. Biomed. Eng.
,
34
(
2
), pp.
315
325
.
20.
Grashow
,
J. S.
,
Sacks
,
M. S.
,
Liao
,
J.
, and
Yoganathan
,
A. P.
,
2006
, “
Planar Biaxial Creep and Stress Relaxation of the Mitral Valve Anterior Leaflet
,”
Ann. Biomed. Eng.
,
34
(
10
), pp.
1509
1518
.
21.
Sacks
,
M. S.
,
He
,
Z.
,
Baijens
,
L.
,
Wanant
,
S.
,
Shah
,
P.
,
Sugimoto
,
H.
, and
Yoganathan
,
A. P.
,
2002
, “
Surface Strains in the Anterior Leaflet of the Functioning Mitral Valve
,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1281
1290
.
22.
McCarthy
,
P. M.
, and
Sales
,
V. L.
,
2010
, “
Evolving Indications for Tricuspid Valve Surgery
,”
Curr. Treat. Opt. Cardiovasc. Med.
,
12
(
6
), pp.
587
597
.
23.
Amini Khoiy
,
K.
, and
Amini
,
R.
,
2016
, “
On the Biaxial Mechanical Response of Porcine Tricuspid Valve Leaflets
,”
ASME J. Biomech. Eng.
,
138
(
10
), p.
104504
.
24.
Fawzy
,
H.
,
Fukamachi
,
K.
,
Mazer
,
C. D.
,
Harrington
,
A.
,
Latter
,
D.
,
Bonneau
,
D.
, and
Errett
,
L.
,
2011
, “
Complete Mapping of the Tricuspid Valve Apparatus Using Three-Dimensional Sonomicrometry
,”
J. Thorac. Cardiovasc. Surg.
,
141
(
4
), pp.
1037
1043
.
25.
Amini Khoiy
,
K.
,
Biswas
,
D.
,
Decker
,
T. N.
,
Asgarian
,
K. T.
,
Loth
,
F.
, and
Amini
,
R.
,
2016
, “
Surface Strains of Porcine Tricuspid Valve Septal Leaflets Measured in Ex Vivo Beating Hearts
,”
ASME J. Biomech. Eng.
,
138
(
11
), p.
111006
.
26.
Boronyak
,
S. M.
, and
Merryman
,
W. D.
,
2012
, “
Development of a Simultaneous Cryo-Anchoring and Radiofrequency Ablation Catheter for Percutaneous Treatment of Mitral Valve Prolapse
,”
Ann. Biomed. Eng.
,
40
(
9
), pp.
1971
1981
.
27.
Price
,
S. L.
,
Norwood
,
C. G.
,
Williams
,
J. L.
,
McElderry
,
H. T.
, and
Merryman
,
W. D.
,
2010
, “
Radiofrequency Ablation Directionally Alters Geometry and Biomechanical Compliance of Mitral Valve Leaflets: Refinement of a Novel Percutaneous Treatment Strategy
,”
Cardiovasc. Eng. Technol.
,
1
(
3
), pp.
194
201
.
28.
May-Newman
,
K.
, and
Yin
,
F. C. P.
,
1998
, “
A Constitutive Law for Mitral Valve Tissue
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
38
47
.
29.
Fung
,
Y.-C.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media
,
New York
.
30.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2004
, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
815
822
.
31.
Amini Khoiy
,
K.
,
Abdulhai
,
S.
,
Glenn
,
I. C.
,
Ponsky
,
T. A.
, and
Amini
,
R.
,
2018
, “
Anisotropic and Nonlinear Biaxial Mechanical Response of Porcine Small Bowel Mesentery
,”
J. Mech. Behavior Biomed. Mater.
,
78
, pp.
154
163
.
32.
Tong
,
P.
, and
Fung
,
Y.-C.
,
1976
, “
The Stress-Strain Relationship for the Skin
,”
J. Biomech.
,
9
(
10
), pp.
649
657
.
33.
Conn
,
A. R.
,
Gould
,
N. I.
, and
Toint
,
P. L.
,
2000
,
Trust Region Methods
,
SIAM
, Philadelphia, PA.
34.
Bellini
,
C.
,
Glass
,
P.
,
Sitti
,
M.
, and
Di Martino
,
E. S.
,
2011
, “
Biaxial Mechanical Modeling of the Small Intestine
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1727
1740
.
35.
Voorhees
,
A.
,
Jan
,
N.-J.
, and
Sigal
,
I.
,
2017
, “
Effects of Collagen Microstructure and Material Properties on the Deformation of the Neural Tissues of the Lamina Cribrosa
,”
Acta Biomater.
,
58
, pp. 278–290.
36.
Voorhees
,
A.
,
Grimm
,
J.
,
Bilonick
,
R.
,
Kagemann
,
L.
,
Ishikawa
,
H.
,
Schuman
,
J.
,
Wollstein
,
G.
, and
Sigal
,
I.
,
2016
, “
What is a Typical Optic Nerve Head?
,”
Exp. Eye Res.
,
149
, pp.
40
47
.
37.
Gsellman
,
L.
, and
Amini
,
R.
,
2016
, “
Patients With Intravitreal Gas Bubbles at Risk of High Intraocular Pressure Without Exceeding Elevation of Surgery: Theoretical Analysis Vitrectomy, High IOP, and No High Altitude Travel
,”
Invest. Ophthalmol. Visual Sci.
,
57
(
7
), pp.
3340
3347
.
38.
Amini
,
R.
,
Barocas
,
V. H.
,
Kavehpour
,
H. P.
, and
Hubschman
,
J. P.
,
2011
, “
Computational Simulation of Altitude Change-Induced Intraocular Pressure Alteration in Patients With Intravitreal Gas Bubbles
,”
Retina
,
31
(
8
), pp.
1656
1663
.
39.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.
40.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
23
30
.
41.
Keyes
,
J. T.
,
Lockwood
,
D. R.
,
Utzinger
,
U.
,
Montilla
,
L. G.
,
Witte
,
R. S.
, and
Vande Geest
,
J. P.
,
2013
, “
Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1579
1591
.
42.
Stella
,
J. A.
,
Liao
,
J.
, and
Sacks
,
M. S.
,
2007
, “
Time-Dependent Biaxial Mechanical Behavior of the Aortic Heart Valve Leaflet
,”
J. Biomech.
,
40
(
14
), pp.
3169
3177
.
43.
Humphrey
,
J. D.
,
1999
, “
An Evaluation of Pseudoelastic Descriptors Used in Arterial Mechanics
,”
ASME J. Biomech. Eng.
,
121
(
2
), pp.
259
262
.
44.
Girard
,
M. J.
,
Dahlmann-Noor
,
A.
,
Rayapureddi
,
S.
,
Bechara
,
J. A.
,
Bertin
,
B. M.
,
Jones
,
H.
,
Albon
,
J.
,
Khaw
,
P. T.
, and
Ethier
,
C. R.
,
2011
, “
Quantitative Mapping of Scleral Fiber Orientation in Normal Rat Eyes
,”
Invest. Ophthalmol. Visual Sci.
,
52
(
13
), pp.
9684
9693
.
45.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
,
1997
, “
A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
,
25
(
4
), pp.
678
689
.
46.
Amini
,
R.
,
Voycheck
,
C. A.
, and
Debski
,
R. E.
,
2014
, “
A Method for Predicting Collagen Fiber Realignment in Non-Planar Tissue Surfaces as Applied to Glenohumeral Capsule During Clinically Relevant Deformation
,”
ASME J. Biomech. Eng.
,
136
(
3
), p.
031003
.
47.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Geest
,
J. V.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
725
736
.
48.
Pant
,
A. D.
,
Thomas
,
V. S.
,
Black
,
A. L.
,
Verba
,
T.
,
Lesicko
,
J. G.
, and
Amini
,
R.
,
2018
, “
Pressure-Induced Microstructural Changes in Porcine Tricuspid Valve Leaflets
,”
Acta Biomater.
,
67
, pp.
248
258
.
49.
Federico
,
S.
,
Grillo
,
A.
,
Giaquinta
,
G.
, and
Herzog
,
W.
,
2008
, “
Convex Fung-Type Potentials for Biological Tissues
,”
Meccanica
,
43
(
3
), pp.
279
288
.
50.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.
51.
Sacks
,
M. S.
,
2003
, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.
52.
Fata
,
B.
,
Zhang
,
W.
,
Amini
,
R.
, and
Sacks
,
M. S.
,
2014
, “
Insights Into Regional Adaptations in the Growing Pulmonary Artery Using a Meso-Scale Structural Model: Effects of Ascending Aorta Impingement
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021009
.
53.
Wognum
,
S.
,
Schmidt
,
D. E.
, and
Sacks
,
M. S.
,
2009
, “
On the Mechanical Role of De Novo Synthesized Elastin in the Urinary Bladder Wall
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101018
.
54.
Amini
,
R.
,
Eckert
,
C. E.
,
Koomalsingh
,
K.
,
McGarvey
,
J.
,
Minakawa
,
M.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2012
, “
On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1455
1467
.
You do not currently have access to this content.