Quantitative computed tomography (qCT) relies on calibrated bone mineral density data. If a calibration phantom is absent from the CT scan, post hoc calibration becomes necessary. Scanning a calibration phantom after-the-fact and applying that calibration to uncalibrated scans has been used previously. Alternatively, the estimated density is known to vary with CT settings, suggesting that it may be possible to predict the calibration terms using CT settings. This study compares a novel CT setting regression method for post hoc calibration to standard and post hoc phantom-only calibrations. Five cadaveric upper limbs were scanned at 11 combinations of peak tube voltage and current (80–140 kV and 100–300 mA) with two calibration phantoms. Density calibrations were performed for the cadaver scans, and scans of the phantoms alone. Stepwise linear regression determined if the calibration equation terms were predictable using peak tube voltage and current. Peak tube voltage, but not current, was significantly correlated with regression calibration terms. Calibration equation slope was significantly related to the type of phantom (p < 0.001), calibration method (p = 0.026), and peak tube voltage (p < 0.001), but not current (p = 1.000). The calibration equation vertical intercept was significantly related to the type of phantom (p < 0.001), and peak tube voltage (p = 0.006), but not calibration method (p = 0.682), or current (p = 0.822). Accordingly, regression can correlate peak tube voltage with density calibration terms. Suggesting that, while standard qCT calibration is preferable, regression calibration may be an acceptable post hoc method when necessary.

References

References
1.
Cong
,
A.
,
Buijs
,
J. O. D.
, and
Dragomir-Daescu
,
D.
,
2011
, “
In Situ Parameter Identification of Optimal Density-Elastic Modulus Relationships in Subject-Specific Finite Element Models of the Proximal Femur
,”
Med. Eng. Phys.
,
33
(
2
), pp.
164
173
.
2.
Keaveny
,
T. M.
,
McClung
,
M. R.
,
Wan
,
X.
,
Kopperdahl
,
D. L.
,
Mitlak
,
B. H.
, and
Krohn
,
K.
,
2012
, “
Femoral Strength in Osteoporotic Women Treated With Teriparatide or Alendronate
,”
Bone
,
50
(
1
), pp.
165
170
.
3.
Keyak
,
J. H.
,
Sigurdsson
,
S.
,
Karlsdottir
,
G. S.
,
Oskarsdottir
,
D.
,
Sigmarsdottir
,
A.
,
Kornak
,
J.
,
Harris
,
T. B.
,
Sigurdsson
,
G.
,
Jonsson
,
B. Y.
,
Siggeirsdottir
,
K.
,
Eiriksdottir
,
G.
,
Gudnason
,
V.
, and
Lang
,
T. F.
,
2013
, “
Effect of Finite Element Model Loading Condition on Fracture Risk Assessment in Men and Women: The AGES-Reykjavik Study
,”
Bone
,
57
(
1
), pp.
18
29
.
4.
Tawara
,
D.
,
Sakamoto
,
J.
,
Murakami
,
H.
,
Kawahara
,
N.
,
Oda
,
J.
, and
Tomita
,
K.
,
2010
, “
Mechanical Evaluation by Patient-Specific Finite Element Analyses Demonstrates Therapeutic Effects for Osteoporotic Vertebrae
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
1
), pp.
31
40
.
5.
Kopperdahl
,
D. L.
,
Aspelund
,
T.
,
Hoffmann
,
P. F.
,
Sigurdsson
,
S.
,
Siggeirsdottir
,
K.
,
Harris
,
T. B.
,
Gudnason
,
V.
, and
Keaveny
,
T. M.
,
2014
, “
Assessment of Incident Spine and Hip Fractures in Women and Men Using Finite Element Analysis of CT Scans
,”
J. Bone Miner. Res.
,
29
(
3
), pp.
570
580
.
6.
Razfar
,
N.
,
Reeves
,
J. M.
,
Langohr
,
D. G.
,
Willing
,
R.
,
Athwal
,
G. S.
, and
Johnson
,
J. A.
,
2016
, “
Comparison of Proximal Humeral Bone Stresses Between Stemless, Short Stem, and Standard Stem Length: A Finite Element Analysis
,”
J. Shoulder Elbow Surg.
,
25
(
7
), pp.
1076
1083
.
7.
Dragomir-Daescu
,
D.
,
Op Den Buijs
,
J.
,
McEligot
,
S.
,
Dai
,
Y.
,
Entwistle
,
R. C.
,
Salas
,
C.
,
Melton
,
L. J.
,
Bennet
,
K. E.
,
Khosla
,
S.
, and
Amin
,
S.
,
2011
, “
Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
742
755
.
8.
Eberle
,
S.
,
Göttlinger
,
M.
, and
Augat
,
P.
,
2013
, “
An Investigation to Determine if a Single Validated Density-Elasticity Relationship Can Be Used for Subject Specific Finite Element Analyses of Human Long Bones
,”
Med. Eng. Phys.
,
35
(
7
), pp.
875
883
.
9.
Eberle
,
S.
,
Göttlinger
,
M.
, and
Augat
,
P.
,
2013
, “
Individual Density-Elasticity Relationships Improve Accuracy of Subject-Specific Finite Element Models of Human Femurs
,”
J. Biomech.
,
46
(
13
), pp.
2152
2157
.
10.
Haider
,
I. T.
,
Speirs
,
A. D.
, and
Frei
,
H.
,
2013
, “
Effect of Boundary Conditions, Impact Loading and Hydraulic Stiffening on Femoral Fracture Strength
,”
J. Biomech.
,
46
(
13
), pp.
2115
2121
.
11.
Kheirollahi
,
H.
, and
Luo
,
Y.
,
2015
, “
Assessment of Hip Fracture Risk Using Cross-Section Strain Energy Determined by QCT-Based Finite Element Modeling
,”
Biomed. Res. Int.
, p.
e413839
.
12.
Campoli
,
G.
,
Bolsterlee
,
B.
,
van der Helm
,
F.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2014
, “
Effects of Densitometry, Material Mapping and Load Estimation Uncertainties on the Accuracy of Patient-Specific Finite-Element Models of the Scapula
,”
J. R. Soc. Interface
,
11
(
93
), p.
20131146
.
13.
Pomwenger
,
W.
,
Entacher
,
K.
,
Resch
,
H.
, and
Schuller-Götzburg
,
P.
,
2014
, “
Need for CT-Based Bone Density Modelling in Finite Element Analysis of a Shoulder Arthroplasty Revealed Through a Novel Method for Result Analysis
,”
Biomed. Tech.
,
59
(
5
), pp.
421
430
.
14.
Taylor
,
W. R.
,
Roland
,
E.
,
Ploeg
,
H.
,
Hertig
,
D.
,
Klabunde
,
R.
,
Warner
,
M. D.
,
Hobatho
,
M. C.
,
Rakotomanana
,
L.
, and
Clift
,
S. E.
,
2002
, “
Determination of Orthotropic Bone Elastic Constants Using FEA and Modal Analysis
,”
J. Biomech.
,
35
(
6
), pp.
767
773
.
15.
Schileo
,
E.
,
Dall'Ara
,
E.
,
Taddei
,
F.
,
Malandrino
,
A.
,
Schotkamp
,
T.
,
Baleani
,
M.
, and
Viceconti
,
M.
,
2008
, “
An Accurate Estimation of Bone Density Improves the Accuracy of Subject-Specific Finite Element Models
,”
J. Biomech.
,
41
(
11
), pp.
2483
2491
.
16.
Keyak
,
J. H.
,
Lee
,
I. Y.
, and
Skinner
,
H. B.
,
1994
, “
Correlations Between Orthogonal Mechanical Properties and Density of Trabecular Bone: Use of Different Densitometric Measures
,”
J. Biomed. Mater. Res.
,
28
(
11
), pp.
1329
1336
.
17.
Giambini
,
H.
,
Dragomir-Daescu
,
D.
,
Huddleston
,
P. M.
,
Camp
,
J. J.
,
An
,
K.-N.
, and
Nassr
,
A.
,
2015
, “
The Effect of Quantitative Computed Tomography Acquisition Protocols on Bone Mineral Density Estimation
,”
ASME J. Biomech. Eng.
,
137
(
11
), pp.
1
6
.
18.
Faulkner
,
K. G.
,
Gluer
,
C. C.
,
Grampp
,
S.
, and
Genant
,
H. K.
,
1993
, “
Cross-Calibration of Liquid and Solid QCT Calibration Standards: Corrections to the UCSF Normative Data
,”
Osteoporos. Int.
,
3
(
1
), pp.
36
42
.
19.
Mindways Software
,
2011
, “
QCT PRO: Bone Mineral Densitometry Software CT Calibration Phantom
,” Mindways Software Inc., Austin, TX, pp.
1
10
.
20.
Ashman
,
R. B.
,
1989
, “
Experimental Techniques
,”
Bone Mechanics
,
S. C.
Cowin
, ed.,
CRC Press
,
Boca Raton, FL
, p.
76
.
21.
Bonnuci
,
E.
,
2000
, “
Basic Composition and Structure of Bone
,”
Mechanical Testing of Bone and the Bone-Implant Interface
,
Y. H.
An
and
R. A.
Draughn
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
3
21
.
You do not currently have access to this content.