Computational fluid dynamics (CFD) modeling of myocardial bridging (MB) remains challenging due to its dynamic and phasic nature. This study aims to develop a patient-specific CFD model of MB. There were two parts to this study. The first part consisted of developing an in silico model of the left anterior descending (LAD) coronary artery of a patient with MB. In this regard, a moving-boundary CFD algorithm was developed to simulate the patient-specific muscle compression caused by MB. A second simulation was also performed with the bridge artificially removed to determine the hemodynamics in the same vessel in the absence of MB. The second part of the study consisted of hemodynamic analysis of three patients with mild and moderate and severe MB in their LAD by means of the developed in silico model in the first part. The average shear stress in the proximal and bridge segments for model with MB were significantly different from those for model without MB (proximal segment: 0.32 ± 0.14 Pa (with MB) versus 0.97 ± 0.39 Pa (without MB), P < 0.0001 — bridge segment: 2.60 ± 0.94 Pa (with MB) versus 1.50 ± 0.64 Pa (without MB), P < 0.0001). When all three patients were evaluated, increasing the degree of vessel compression shear stress in the proximal segment decreased, whereas the shear stress in the bridge segment increased. The presence of MB resulted in hemodynamic abnormalities in the proximal segment, whereas segments within the bridge exhibited hemodynamic patterns which tend to discourage atheroma development.

References

1.
Herrmann
,
J.
,
Higano
,
S. T.
,
Lenon
,
R. J.
,
Rihal
,
C. S.
, and
Lerman
,
A.
,
2004
, “
Myocardial Bridging is Associated With Alteration in Coronary Vasoreactivity
,”
Eur. Heart J.
,
25
(
23
), pp.
2134
2142
.
2.
Corban
,
M. T.
,
Hung
,
O. Y.
,
Eshtehardi
,
P.
,
Rasoul-Arzrumly
,
E.
,
McDaniel
,
M.
,
Mekonnen
,
G.
,
Timmins
,
L. H.
,
Lutz
,
J.
,
Guyton
,
R. A.
, and
Samady
,
H.
,
2014
, “
Myocardial Bridging: Contemporary Understanding of Pathophysiology With Implications for Diagnostic and Therapeutic Strategies
,”
J. Am. Coll. Cardiol.
,
63
(
22
), pp.
2346
–23
55
.
3.
Alegria
,
J. R.
,
Herrmann
,
J.
,
Holmes
,
D. R.
, Jr.
,
Lerman
,
A.
, and
Rihal
,
C. S.
,
2005
, “
Myocardial Bridging
,”
Eur. Heart J.
,
26
(
12
), pp.
1159
–11
68
.
4.
Ishikawa
,
Y.
,
Akasaka
,
Y.
,
Akishima-Fukasawa
,
Y.
,
Iuchi
,
A.
,
Suzuki
,
K.
,
Uno
,
M.
,
Abe
,
E.
,
Yang
,
Y.
,
Li
,
C. P.
,
Mukai
,
K.
,
Niino
,
H.
,
Tanaka
,
M.
,
Kawahara
,
Y.
,
Sugiura
,
H.
,
Shinagawa
,
T.
,
Morinaga
,
S.
,
Ogata
,
K.
,
Onuma
,
J.
,
Yanagida-Iida
,
M.
,
Taki
,
K.
,
Komatsu
,
A.
,
Satoh
,
H.
,
Yamada
,
K.
,
Shimokawa
,
R.
,
Shibuya
,
K.
,
Takahashi
,
K.
, and
Ishii
,
T.
,
2013
, “
Histopathologic Profiles of Coronary Atherosclerosis by Myocardial Bridge Underlying Myocardial Infarction
,”
Atherosclerosis
,
226
(
1
), pp.
118
–1
23
.
5.
Ishikawa
,
Y.
,
Akasaka
,
Y.
,
Suzuki
,
K.
,
Fujiwara
,
M.
,
Ogawa
,
T.
,
Yamazaki
,
K.
,
Niino
,
H.
,
Tanaka
,
M.
,
Ogata
,
K.
,
Morinaga
,
S.
,
Ebihara
,
Y.
,
Kawahara
,
Y.
,
Sugiura
,
H.
,
Takimoto
,
T.
,
Komatsu
,
A.
,
Shinagawa
,
T.
,
Taki
,
K.
,
Satoh
,
H.
,
Yamada
,
K.
,
Yanagida-Iida
,
M.
,
Shimokawa
,
R.
,
Shimada
,
K.
,
Nishimura
,
C.
,
Ito
,
K.
, and
Ishii
,
T.
,
2009
, “
Anatomic Properties of Myocardial Bridge Predisposing to Myocardial Infarction
,”
Circulation
,
120
(
5
), pp.
376
–3
83
.
6.
Masuda
,
T.
,
Ishikawa
,
Y.
,
Akasaka
,
Y.
,
Itoh
,
K.
,
Kiguchi
,
H.
, and
Ishii
,
T.
,
2001
, “
The Effect of Myocardial Bridging of the Coronary Artery on Vasoactive Agents and Atherosclerosis Localization
,”
J. Pathol.
,
193
(
3
), pp.
408
–4
14
.
7.
Wang
,
J. C.
,
Normand
,
S. L.
,
Mauri
,
L.
, and
Kuntz
,
R. E.
,
2004
, “
Coronary Artery Spatial Distribution of Acute Myocardial Infarction Occlusions
,”
Circulation
,
110
(
11
), pp.
278
–2
84
.
8.
Cheng
,
C.
,
Tempel
,
D.
,
van Haperen
,
R.
,
van der Baan
,
A.
,
Grosveld
,
F.
,
Daemen
,
M. J.
,
Krams
,
R.
, and
de Crom
,
R.
,
2006
, “
Atherosclerotic Lesion Size and Vulnerability are Determined by Patterns of Fluid Shear Stress
,”
Circulation
,
113
(
23
), pp.
2744
–27
53
.
9.
Ferrari
,
M.
,
Werner
,
G. S.
,
Bahrmann
,
P.
,
Richartz
,
B. M.
, and
Figulla
,
H. R.
,
2006
, “
Turbulent Flow as a Cause for Underestimating Coronary Flow Reserve Measured by Doppler Guide Wire
,”
Cardiovasc. Ultrasound
,
4
(
1
), p.
14
.
10.
Javadzadegan
,
A.
,
Simmons
,
A.
,
Behna
,
M.
, and
Barber
,
T.
,
2017
, “
Computational Modelling of Abdominal Aortic Aneurysms: Effect of Suprarenal vs Infrarenal Positions
,”
Eur. J. Mech. B Fluids
,
61
(
Pt. 1
), pp.
112
124
.
11.
Shimizu
,
Y.
,
Javadzadegan
,
A.
,
Hayase
,
T.
, and
Ohta
,
M.
,
2013
, “
Flow Observations in Elastic Stenosis Biomodel With Comparison to Rigid-like Model
,”
Technol. Health Care.
,
21
(
4
), pp.
305
–3
14
.
12.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
–20
42
.
13.
Puri
,
R.
,
Leong
,
D. P.
,
Nicholls
,
S. J.
,
Liew
,
G. Y.
,
Nelson
,
A. J.
,
Carbone
,
A.
,
Copus
,
B.
,
Wong
,
D. T.
,
Beltrame
,
J. F.
,
Worthley
,
S. G.
, and
Worthley
,
M. I.
,
2015
, “
Coronary Artery Wall Shear Stress is Associated With Endothelial Dysfunction and Expansive Arterial Remodelling in Patients With Coronary Artery Disease
,”
EuroIntervention
,
10
(
12
), pp.
1440
–144
8
.
14.
Samady
,
H.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Maynard
,
C.
,
Timmins
,
L. H.
,
Quyyumi
,
A. A.
, and
Giddens
,
D. P.
,
2011
, “
Coronary Artery Wall Shear Stress is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease
,”
Circulation
,
124
(
7
), pp.
779
–7
88
.
15.
Stone
,
P. H.
,
Coskun
,
A. U.
,
Kinlay
,
S.
,
Clark
,
M. E.
,
Sonka
,
M.
,
Wahle
,
A.
,
Ilegbusi
,
O. J.
,
Yeghiazarians
,
Y.
,
Popma
,
J. J.
,
Orav
,
J.
,
Kuntz
,
R. E.
, and
Feldman
,
C. L.
,
2003
, “
Effect of Endothelial Shear Stress on the Progression of Coronary Artery Disease, Vascular Remodelling, and In-Stent Restenosis in Humans: In Vivo 6-Month Follow-Up Study
,”
Circulation
,
108
(
4
), pp.
438
–4
44
.
16.
Stone
,
P. H.
,
Coskun
,
A. U.
,
Kinlay
,
S.
,
Popma
,
J. J.
,
Sonka
,
M.
,
Wahle
,
A.
,
Yeghiazarians
,
Y.
,
Maynard
,
C.
,
Kuntz
,
R. E.
, and
Feldman
,
C. L.
,
2007
, “
Regions of Low Endothelial Shear Stress are the Sites Where Coronary Plaque Progresses and Vascular Remodelling Occurs in Humans: An In Vivo Serial Study
,”
Eur. Heart J.
,
28
(
6
), pp.
705
710
.
17.
Weber
,
C.
, and
Noels
,
H.
,
2011
, “
Atherosclerosis: Current Pathogenesis and Therapeutic Options
,”
Nat. Med.
,
17
(
11
), pp.
1410
1422
.
18.
Al-tamimi
,
M.
,
Tan
,
C. W.
,
Qiao
,
J.
,
Pennings
,
G. J.
,
Javadzadegan
,
A.
,
Yong
,
A. S.
,
Arthur
,
J. F.
,
Davis
,
A. K.
,
Jing
,
J.
,
Mu
,
F. T.
,
Hamilton
,
J. R.
,
Jackson
,
S. P.
,
Ludwig
,
A.
,
Berndt
,
M. C.
,
Ward
,
C. M.
,
Kritharides
,
L.
,
Andrews
,
R. K.
, and
Gardiner
,
E. E.
,
2012
, “
Pathologic Shear Triggers Shedding of Vascular Receptors: A Novel Mechanism for down-Regulation of Platelet Glycoprotein VI in Stenosed Coronary Vessels
,”
Blood
,
119
(
18
), pp.
4311
4320
.
19.
Javadzadegan
,
A.
,
Yong
,
A. S.
,
Chang
,
M.
,
Ng
,
A. C.
,
Yiannikas
,
J.
,
Ng
,
M. K.
,
Behnia
,
M.
, and
Kritharides
,
L.
,
2013
, “
Flow Recirculation Zone Length and Shear Rate are Differentially Affected by Stenosis Severity in Human Coronary Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
304
(
4
), pp.
559
566
.
20.
Yong
,
A. S.
,
Pennings
,
G. J.
,
Chang
,
M.
,
Hamzah
,
A.
,
Chung
,
T.
,
Qi
,
M.
,
Brieger
,
D.
,
Behnia
,
M.
,
Krilis
,
S. A.
,
Ng
,
M. K.
,
Lowe
,
H. C.
, and
Kritharides
,
L.
,
2011
, “
Intracoronary Shear-Related Up-Regulation of Platelet P-Selectin and Platelet-Monocyte Aggregation despite the Use of Aspirin and Clopidogrel
,”
Blood
,
117
(
1
), pp.
11
20
.
21.
Morris
,
P. D.
,
Narracott
,
A.
,
Von tengg-kobligk
,
H.
,
Silva Soto
,
D. A.
,
Hsiao
,
S.
,
Lungu
,
A.
,
Evansm
,
P.
,
Bressloff
,
N. W.
,
Lawford
,
P. V.
,
Hose
,
D. R.
, and
Gunn
,
J. P.
,
2016
, “
Computational Fluid Dynamics Modelling in Cardiovascular Medicine
,”
Heart
,
102
(
1
), pp.
18
28
.
22.
Doriot
,
P. A.
,
Dorsaz
,
P. A.
, and
Noble
,
J.
,
2007
, “
Could Increased Axial Wall Stress Be Responsible for the Development of Atheroma in the Proximal Segment of Myocardial Bridges?
,”
Theor. Biol. Med. Model.
,
4
(
1
), p.
29
.
23.
Nikolić
,
D.
,
Radović
,
M.
,
Aleksandrić
,
S.
,
Tomašević
,
M.
, and
Filipović
,
N.
,
2014
, “
Prediction of Coronary Plaque Location on Arteries Having Myocardial Bridge, Using Finite Element Models
,”
Comput. Methods Programs Biomed.
,
117
(
2
), pp.
137
144
.
24.
Yamada
,
R.
,
Tremmel
,
J. A.
,
Tanaka
,
S.
,
Lin
,
S.
,
Kobayashi
,
Y.
,
Hollak
,
M. B.
,
Yock
,
P. G.
,
Fitzgerald
,
P. J.
,
Schnittger
,
I.
, and
Honda
,
Y.
,
2016
, “
Functional versus Anatomic Assessment of Myocardial Bridging by Intravascular Ultrasound: Impact of Arterial Compression on Proximal Atherosclerotic Plaque
,”
J. Am. Heart Assoc.
,
5
(
4
), p.
e001735
.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-ViscosityTurbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
Menter
,
F. R.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combust.
,
77
(
1–4
), pp.
277
303
.
27.
Bourassa
,
M. G.
,
Butnaru
,
A.
,
Lespérance
,
J.
, and
Tardif
,
J. C.
,
2003
, “
Symptomatic Myocardial Bridges: Overview of Ischemic Mechanisms and Current Diagnostic and Treatment Strategies
,”
J. Am. Coll. Cardiol.
,
41
(
3
), pp.
351
359
.
28.
Javadzadegan
,
A.
,
Shimizu
,
Y.
,
Behnia
,
M.
, and
Ohta
,
M.
,
2013
, “
Correlation Between Reynolds Number and Eccentricity Effect in Stenosed Artery Models
,”
Technol. Health Care.
,
21
(
4
), pp.
357
367
.
29.
Javadzadegan
,
A.
,
Lotfi
,
A.
,
Simmons
,
A.
, and
Barber
,
T.
,
2016
, “
Haemodynamic Analysis of Femoral Artery Bifurcation Models Under Different Physiological Flow Waveforms
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
11
), pp.
1143
1153
.
30.
Javadzadegan
,
A.
,
Yong
,
A. S.
,
Chang
,
M.
,
Ng
,
M. K.
,
Behnia
,
M.
, and
Kritharides
,
L.
,
2017
, “
Haemodynamic Assessment of Human Coronary Arteries is Affected by Degree-of-Freedom of Artery Movement
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
3
), pp.
260
272
.
31.
Ishii
,
T.
,
Asuwa
,
N.
,
Masuda
,
S.
,
Ishikawa
,
Y.
,
Kiguchi
,
H.
, and
Shimoda
,
K.
,
1991
, “
Atherosclerosis Suppression in the Left Anterior Descending Coronary Artery by the Presence of Myocardial Bridge: An Ultrastructural Study
,”
Mod. Pathol.
,
4
(4), pp.
424
431
.
32.
Ishii
,
T.
,
Hosoda
,
Y.
,
Osaka
,
T.
,
Imai
,
T.
,
Shimada
,
H.
,
Takami
,
A.
, and
Yamada
,
H.
,
1986
, “
The Significance of Myocardial Bridge Upon Atherosclerosis in the Left Anterior Descending Coronary Artery
,”
J. Pathol.
,
148
(
4
), pp.
279
291
.
33.
Mohlenkamp
,
S.
,
Hort
,
W.
,
Ge
,
J.
, and
Erbel
,
R.
,
2002
, “
Update on Myocardial Bridge
,”
Circulation
,
106
(
20
), pp.
2616
2622
.
34.
Qin
,
W. D.
,
Mi
,
S. H.
,
Li
,
C.
,
Wang
,
G. X.
,
Zhang
,
J. N.
,
Wang
,
H.
,
Zhang
,
F.
,
Ma
,
Y.
,
Wu
,
D. W.
, and
Zhang
,
M.
,
2015
, “
Low Shear Stress Induced HMGB1 Translocation and Release Via PECAM-1/PARP-1 Pathway to Induce Inflammation Response
,”
PLoS ONE
,
10
(
3
), p.
e0120586
.
35.
Sheikh
,
S.
,
Rainger
,
G. E.
,
Gale
,
Z.
,
Rahman
,
M.
, and
Nash
,
G. B.
,
2003
, “
Exposure to Fluid Shear Stress Modulates the Ability of Endothelial Cells to Recruit Neutrophils in Response to Tumor Necrosis Factor-Alpha: A Basis for Local Variations in Vascular Sensitivity to Inflammation
,”
Blood
,
102
(
8
), pp.
2828
2834
.
36.
Sui
,
B.
,
Gao
,
P.
,
Lin
,
Y.
,
Gao
,
B.
,
Liu
,
L.
, and
An
,
J.
,
2008
, “
Blood Flow Pattern and Wall Shear Stress in the Internal Carotid Arteries of Healthy Subjects
,”
Acta Radiol.
,
49
(
7
), pp.
806
814
.
37.
Sakamoto
,
N.
,
Ohashi
,
T.
, and
Sato
,
M.
,
2006
, “
Effect of Fluid Shear Stress on Migration of Vascular Smooth Muscle Cells in Cocultured Model
,”
Ann. Biomed. Eng.
,
34
(
3
), pp.
408
415
.
38.
Wentzel
,
J. J.
,
Chatzizisis
,
Y. S.
,
Gijsen
,
F. J.
,
Giannoglou
,
G. D.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2012
, “
Endothelial Shear Stress in the Evolution of Coronary Atherosclerotic Plaque and Vascular Remodelling: Current Understanding and Remaining Questions
,”
Cardiovasc. Res.
,
96
(
2
), pp.
234
243
.
39.
Shadden
,
S. C.
, and
Hendabadi
,
S.
,
2013
, “
Potential Fluid Mechanic Pathways of Platelet Activation
,”
Biomech. Model Mechanobiol.
,
12
(
3
), pp.
467
474
.
40.
McDonald
,
D. A.
,
1974
,
Blood Flow in Arteries
,
Edward Arnold
,
London
.
41.
Theodorakakos
,
A.
,
Gavaises
,
M.
,
Andriotis
,
A.
,
Zifan
,
A.
,
Liatsis
,
P.
,
Pantos
,
I.
,
Efstathopoulos
,
E. P.
, and
Katritsis
,
D.
,
2008
, “
Simulation of Cardiac Motion on Non-Newtonian, Pulsating Flow Development in the Human Left Anterior Descending Coronary Artery
,”
Phys. Med. Biol.
,
53
(
18
), pp.
4875
4892
.
42.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
,
2008
, “
Modeling Transition to Turbulence in Eccentric Stenotic Flows
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
014503
.
You do not currently have access to this content.