In-stent restenosis ails many patients who have undergone stenting. When the stented artery is a bifurcation, the intervention is particularly critical because of the complex stent geometry involved in these structures. Computational fluid dynamics (CFD) has been shown to be an effective approach when modeling blood flow behavior and understanding the mechanisms that underlie in-stent restenosis. However, these CFD models require validation through experimental data in order to be reliable. It is with this purpose in mind that we performed particle image velocimetry (PIV) measurements of velocity fields within flows through a simplified coronary bifurcation. Although the flow in this simplified bifurcation differs from the actual blood flow, it emulates the main fluid dynamic mechanisms found in hemodynamic flow. Experimental measurements were performed for several stenting techniques in both steady and unsteady flow conditions. The test conditions were strictly controlled, and uncertainty was accurately predicted. The results obtained in this research represent readily accessible, easy to emulate, detailed velocity fields and geometry, and they have been successfully used to validate our numerical model. These data can be used as a benchmark for further development of numerical CFD modeling in terms of comparison of the main flow pattern characteristics.

References

References
1.
Tarbell
,
J. M.
,
Shi
,
Z.-D.
,
Dunn
,
J.
, and
Jo
,
H.
,
2014
, “
Fluid Mechanics, Arterial Disease, and Gene Expression
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
591
614
.
2.
Greil
,
O.
,
Kleinschmidt
,
T.
,
Weiss
,
W.
,
Wolf
,
O.
,
Heider
,
P.
,
Schaffner
,
S.
,
Gianotti
,
M.
,
Schmid
,
T.
,
Liepsch
,
D.
, and
Berger
,
H.
,
2005
, “
Flow Velocities After Carotid Artery Stenting: Impact of Stent Design. A Fluid Dynamics Study in a Carotid Artery Model With Laser Doppler Anemometry
,”
Cardiovasc. Interventional Radiol.
,
28
(
1
), pp.
66
76
.
3.
Katritsis
,
D. G.
,
Theodorakakos
,
A.
,
Pantos
,
I.
,
Gavaises
,
M.
,
Karcanias
,
N.
, and
Efstathopoulos
,
E. P.
,
2012
, “
Flow Patterns at Stented Coronary Bifurcations Computational Fluid Dynamics Analysis
,”
Circ.-Cardiovasc. Interventions
,
5
(
4
), pp.
530
539
.
4.
Morlacchi
,
S.
,
Chiastra
,
C.
,
Gastaldi
,
D.
,
Pennati
,
G.
,
Dubini
,
G.
, and
Migliavacca
,
F.
,
2011
, “
Sequential Structural and Fluid Dynamic Numerical Simulations of a Stented Bifurcated Coronary Artery
,”
ASME J. Biomech. Eng.
,
133
(
12
), p.
121010
.
5.
Buchmann
,
N. A.
,
Yamamoto
,
M.
,
Jermy
,
M.
, and
David
,
T.
,
2010
, “
Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD) Modelling of Carotid Artery Haemodynamics Under Steady Flow: A Validation Study
,”
J. Biomech. Sci. Eng.
,
5
(
4
), pp.
421
436
.
6.
Charonko
,
J.
,
Karri
,
S.
,
Schmieg
,
J.
,
Prabhu
,
S.
, and
Vlachos
,
P.
,
2009
, “
In Vitro, Time-Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress
,”
Ann. Biomed. Eng.
,
37
(
7
), pp.
1310
1321
.
7.
Deplano
,
V.
, and
Siouffi
,
M.
,
1999
, “
Experimental and Numerical Study of Pulsatile Flows Through Stenosis: Wall Shear Stress Analysis
,”
J. Biomech.
,
32
(
10
), pp.
1081
1090
.
8.
Ku
,
D. N.
, and
Giddens
,
D. P.
,
1987
, “
Laser Doppler Anemometer Measurements of a Pulsatile Flow in a Model Carotid Bifurcation
,”
J. Biomech.
,
20
(
4
), pp.
407
421
.
9.
Raben
,
J. S.
,
Morlacchi
,
S.
,
Burzotta
,
F.
,
Migliavacca
,
F.
, and
Vlachos
,
P. P.
,
2015
, “
Local Blood Flow Patterns in Stented Coronary Bifurcations: An Experimental and Numerical Study
,”
J. Appl. Biomater. Funct. Mater.
,
13
(
2
), pp.
E116
E126
.
10.
García Carrascal
,
P.
,
2015
, “
Estudio experimental del patrón de flujo de un modelo de una bifurcación coronaria con stent
,” Ph.D. thesis, University of Valladolid, Valladolid, Spain.
11.
García García
,
J.
,
Manuel Martín
,
F. J.
,
Doce Carrasco
,
Y.
,
Castro Ruiz
,
F.
,
Crespo Martínez
,
A.
,
Goicolea Marin
,
P.
, and
Fernandez Diaz
,
J. A.
,
2012
, “
Pulsatile Flow in Coronary Bifurcations for Different Stenting Techniques
,”
Tenth World Congress on Computational Mechanics
, São Paulo, Brazil, July 8–13, Paper No.
18404
.https://www.researchgate.net/publication/269196130_PULSATILE_FLOW_IN_CORONARY_BIFURCATIONS_FOR_DIFFERENT_STENTING_TECHNIQUES
12.
García García
,
J.
,
Garcia Carrascal
,
P.
,
Castro Ruiz
,
F.
,
Manuel Martín
,
F. J.
, and
Fernandez Diaz
,
J. A.
,
2017
, “
Effects of Bifurcation-Specific and Conventional Stents on Coronary Bifurcation Flow. An Experimental and Numerical Study
,”
J. Biomech.
,
54
, pp.
64
72
.
13.
Riley
,
W. A.
,
Barnes
,
R. W.
,
Evans
,
G. W.
, and
Burke
,
G. L.
,
1992
, “
Ultrasonic Measurements of the Elastic-Modulus of the Common Carotid-Artery. The Atherosclerosis Risk in Communities (ARIC) Study
,”
Stroke
,
23
(
7
), pp.
952
956
.
14.
Berry
,
J. L.
,
Manoach
,
E.
,
Mekkaoui
,
C.
,
Rolland
,
P. H.
,
Moore
,
J. E.
, and
Rachev
,
A.
,
2002
, “
Hemodynamics and Wall Mechanics of a Compliance Matching Stent: In Vitro and In Vivo Analysis
,”
J. Vasc. Interventional Radiol.
,
13
(
1
), pp.
97
105
.
15.
Chandran
,
K. B.
,
Rittgers
,
S. E.
, and
Yoganathan
,
A. P.
,
2012
,
Biofluid Mechanics: The Human Circulation
,
CRC Press
, Boca Raton, FL.
16.
Na
,
S.-H.
,
Koo
,
B.-K.
,
Kim
,
J. C.
,
Yang
,
H.-M.
,
Park
,
K.-W.
,
Kang
,
H.-J.
,
Kim
,
H.-S.
,
Oh
,
B.-H.
, and
Park
,
Y.-B.
,
2011
, “
Evaluation of Local Flow Conditions in Jailed Side Branch Lesions Using Computational Fluid Dynamics
,”
Korean Circ. J.
,
41
(
2
), pp.
91
96
.
17.
Finet
,
G.
,
Gilard
,
M.
,
Perrenot
,
B.
,
Rioufol
,
G.
,
Motreff
,
P.
,
Gavit
,
L.
, and
Prost
,
R.
,
2008
, “
Fractal Geometry of Arterial Coronary Bifurcations: A Quantitative Coronary Angiography and Intravascular Ultrasound Analysis
,”
EuroIntervention
,
3
(
4
), pp.
490
498
.
18.
Willert
,
C. E.
, and
Gharib
,
M.
,
1991
, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
,
10
(
4
), pp.
181
193
.
19.
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2013
, “
Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements From Cross-Correlation Peak Ratio
,”
Meas. Sci. Technol.
,
24
(
6
), p. 065301.
20.
van der Giessen
,
A. G.
,
Groen
,
H. C.
,
Doriot
,
P.-A.
,
de Feyter
,
P. J.
,
van der Steen
,
A. F. W.
,
van de Vosse
,
F. N.
,
Wentzel
,
J. J.
, and
Gijsen
,
F. J. H.
,
2011
, “
The Influence of Boundary Conditions on Wall Shear Stress Distribution in Patients Specific Coronary Trees
,”
J. Biomech.
,
44
(
6
), pp.
1089
1095
.
21.
Davies
,
J. E.
,
Whinnett
,
Z. I.
,
Francis
,
D. P.
,
Manisty
,
C. H.
,
Aguado-Sierra
,
J.
,
Willson
,
K.
,
Foale
,
R. A.
,
Malik
,
I. S.
,
Hughes
,
A. D.
,
Parker
,
K. H.
, and
Mayet
,
J.
,
2006
, “
Evidence of a Dominant Backward-Propagating ‘Suction’ Wave Responsible for Diastolic Coronary Filling in Humans, Attenuated in Left Ventricular Hypertrophy
,”
Circulation
,
113
, pp.
1768
1778
.
22.
Westerhof
,
N.
,
Stergiopulos
,
N.
, and
Noble
,
M. I. M.
,
2010
,
Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education
,
Springer
, Berlin.
23.
Chiastra
,
C.
,
Morlacchi
,
S.
,
Gallo
,
D.
,
Morbiducci
,
U.
,
Cardenes
,
R.
,
Larrabide
,
I.
, and
Migliavacca
,
F.
,
2013
, “
Computational Fluid Dynamic Simulations of Image-Based Stented Coronary Bifurcation Models
,”
J. R. Soc. Interface
,
10
(
84
), p. 20130193.
24.
Babiker
,
M. H.
,
Gonzalez
,
L. F.
,
Ryan
,
J.
,
Albuquerque
,
F.
,
Collins
,
D.
,
Elvikis
,
A.
, and
Frakes
,
D. H.
,
2012
, “
Influence of Stent Configuration on Cerebral Aneurysm Fluid Dynamics
,”
J. Biomech.
,
45
(
3
), pp.
440
447
.
25.
Chiastra
,
C.
,
Morlacchi
,
S.
,
Pereira
,
S.
,
Dubini
,
G.
, and
Migliavacca
,
F.
,
2012
, “
Computational Fluid Dynamics of Stented Coronary Bifurcations Studied With a Hybrid Discretization Method
,”
Eur. J. Mech. B
,
35
, pp.
76
84
.
26.
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2011
, “
A Stochastic Collocation Method for Uncertainty Quantification and Propagation in Cardiovascular Simulations
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031001
.
27.
Sankaran
,
S.
,
Kim
,
H. J.
,
Choi
,
G.
, and
Taylor
,
C. A.
,
2016
, “
Uncertainty Quantification in Coronary Blood Flow Simulations: Impact of Geometry, Boundary Conditions and Blood Viscosity
,”
J. Biomech.
,
49
(12), pp.
2540
2547
.
You do not currently have access to this content.