Successful designs of total hip replacement (THR) need to be robust to surgical variation in sizing and positioning of the femoral stem. This study presents an automated method for comprehensive evaluation of the potential impact of surgical variability in sizing and positioning on the primary stability of a contemporary cementless femoral stem (Corail®, DePuy Synthes). A patient-specific finite element (FE) model of a femur was generated from computed tomography (CT) images from a female donor. An automated algorithm was developed to span the plausible surgical envelope of implant positions constrained by the inner cortical boundary. The analysis was performed on four stem sizes: oversized, ideal (nominal) sized, and undersized by up to two stem sizes. For each size, Latin hypercube sampling was used to generate models for 100 unique alignment scenarios. For each scenario, peak hip contact and muscle forces published for stair climbing were scaled to the donor's body weight and applied to the model. The risk of implant loosening was assessed by comparing the bone–implant micromotion/strains to thresholds (150 μm and 7000 με) above which fibrous tissue is expected to prevail and the periprosthetic bone to yield, respectively. The risk of long-term loosening due to adverse bone resorption was assessed using bone adaptation theory. The range of implant positions generated effectively spanned the available intracortical space. The Corail stem was found stable and robust to changes in size and position, with the majority of the bone–implant interface undergoing micromotion and interfacial strains that are well below 150 μm and 7000 με, respectively. Nevertheless, the range of implant positions generated caused an increase of up to 50% in peak micromotion and up to 25% in interfacial strains, particularly for retroverted stems placed in a medial position.

References

References
1.
Bauer
,
T. W.
, and
Schils
,
J.
,
1999
, “
The Pathology of Total Joint Arthroplasty
,”
Skeletal Radiol.
,
28
(
9
), pp.
483
497
.
2.
Mellon
,
S. J.
,
Liddle
,
A. D.
, and
Pandit
,
H.
,
2013
, “
Hip Replacement: Landmark Surgery in Modern Medical History
,”
Maturitas
,
75
(
3
), pp.
221
226
.
3.
Pivec
,
R.
,
Johnson
,
A. J.
,
Mears
,
S. C.
, and
Mont
,
M. A.
,
2012
, “
Hip Arthroplasty
,”
Lancet
,
380
(
9855
), pp.
1768
1777
.
4.
AOANJRR
,
2015
, “
Hip and Knee Arthroplasty Annual Report 2015
,” Australian National Joint Arthoplasty Register, Adelaide, Australia.
5.
Havelin
,
L. I.
,
Espehaug
,
B.
,
Vollset
,
S. E.
, and
Engesaeter
,
L. B.
,
1995
, “
Early Aseptic Loosening of Uncemented Femoral Components in Primary Total Hip Replacement. A Review Based on the Norwegian Arthroplasty Register
,”
Bone Jt. J.
,
77
(
1
), pp.
11
17
.
6.
Bader
,
R.
,
Steinhauser
,
E.
,
Willmann
,
G.
, and
Gradinger
,
R.
,
2001
, “
The Effects of Implant Position, Design and Wear on the Range of Motion After Total Hip Arthroplasty
,”
Hip Int.
,
11
(
2
), pp.
80
90
.
7.
Roberts
,
J. M.
,
Fu
,
F. H.
,
McClain
,
E. J.
, and
Ferguson
,
A. B.
,
1984
, “
A Comparison of the Posterolateral and Anterolateral Approaches to Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
187
, pp.
205
210
.
8.
Zheng
,
G.
,
Marx
,
A.
,
Langlotz
,
U.
,
Widmer
,
K. H.
,
Buttaro
,
M.
, and
Nolte
,
L. P.
,
2002
, “
A Hybrid CT‐Free Navigation System for Total Hip Arthroplasty
,”
Comput. Aided Surg.
,
7
(
3
), pp.
129
145
.
9.
Engh
,
C. A.
, and
Bobyn
,
J. D.
,
1988
, “
The Influence of Stem Size and Extent of Porous Coating on Femoral Bone Resorption after Primary Cementless Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
231
, pp.
7
28
.
10.
Kleemann
,
R. U.
,
Heller
,
M. O.
,
Stoeckle
,
U.
,
Taylor
,
W. R.
, and
Duda
,
G. N.
,
2003
, “
THA Loading Arising From Increased Femoral Anteversion and Offset May Lead to Critical Cement Stresses
,”
J. Orthop. Res.
,
21
(
5
), pp.
767
774
.
11.
Viceconti
,
M.
,
Chiarini
,
A.
,
Testi
,
D.
,
Taddei
,
F.
,
Bordini
,
B.
,
Traina
,
F.
, and
Toni
,
A.
,
2004
, “
New Aspects and Approaches in Pre-Operative Planning of Hip Reconstruction: A Computer Simulation
,”
Langenbecks Arch. Surg.
,
389
(
5
), pp.
400
404
.
12.
Vresilovic
,
E. J.
,
Hozack
,
W. J.
, and
Rothman
,
R. H.
,
1996
, “
Incidence of Thigh Pain After Uncemented Total Hip Arthroplasty as a Function of Femoral Stem Size
,”
J. Arthroplasty
,
11
(
3
), pp.
304
311
.
13.
Carter
,
L. W.
,
Stovall
,
D. O.
, and
Young
,
T. R.
,
1995
, “
Determination of Accuracy of Preoperative Templating of Noncemented Femoral Prostheses
,”
J. Arthroplasty
,
10
(
4
), pp.
507
513
.
14.
Lattanzi
,
R.
,
Grazi
,
E.
,
Testi
,
D.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
,
2003
, “
Accuracy and Repeatability of Cementless Total Hip Replacement Surgery in Patients With Deformed Anatomies
,”
Med. Inf. Internet Med.
,
28
(
1
), pp.
59
71
.
15.
Della Valle
,
A. G.
,
Padgett
,
D. E.
, and
Salvati
,
E. A.
,
2005
, “
Preoperative Planning for Primary Total Hip Arthroplasty
,”
J. Am. Acad. Orthop. Surg.
,
13
(
7
), pp.
455
462
.
16.
Dorr
,
L. D.
,
Wan
,
Z.
,
Malik
,
A.
,
Zhu
,
J.
,
Dastane
,
M.
, and
Deshmane
,
P.
,
2009
, “
A Comparison of Surgeon Estimation and Computed Tomographic Measurement of Femoral Component Anteversion in Cementless Total Hip Arthroplasty
,”
J. Bone Jt. Surg.
,
91
(
11
), pp.
2598
2604
.
17.
Müller
,
M.
,
Abdel
,
M.
,
Wassilew
,
G.
,
Duda
,
G.
, and
Perka
,
C.
,
2015
, “
Do Post-Operative Changes of Neck–Shaft Angle and Femoral Component Anteversion Have an Effect on Clinical Outcome Following Uncemented Total Hip Arthroplasty?
,”
Bone Jt. J.
,
97
(
12
), pp.
1615
1622
.
18.
Wines
,
A. P.
, and
McNicol
,
D.
,
2006
, “
Computed Tomography Measurement of the Accuracy of Component Version in Total Hip Arthroplasty
,”
J. Arthroplasty
,
21
(
5
), pp.
696
701
.
19.
Emerson
,
R. H.
, Jr.
,
2012
, “
Increased Anteversion of Press-Fit Femoral Stems Compared With Anatomic Femur
,”
Clin. Orthop. Relat. Res.
,
470
(
7
), pp.
477
481
.
20.
Maloney
,
W. J.
,
Jasty
,
M.
,
Burke
,
D. W.
,
O'Connor
,
D. O.
,
Zalenski
,
E. B.
,
Bragdon
,
C.
, and
Harris
,
W. H.
,
1989
, “
Biomechanical and Histologic Investigation of Cemented Total Hip Arthroplasties. A Study of Autopsy-Retrieved Femurs After In Vivo Cycling
,”
Clin. Orthop. Relat. Res.
,
249
, pp.
129
140
.
21.
Pilliar
,
R.
,
Lee
,
J.
, and
Maniatopoulos
,
C.
,
1986
, “
Observations on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants
,”
Clin. Orthop. Relat. Res.
,
208
, pp.
108
113
.
22.
Soballe
,
K.
,
Toksvig-Larsen
,
S.
,
Gelineck
,
J.
,
Fruensgaard
,
S.
,
Hansen
,
E. S.
,
Ryd
,
L.
,
Lucht
,
U.
, and
Bunger
,
C.
,
1993
, “
Migration of Hydroxyapatite Coated Femoral Prostheses. A Roentgen Stereophotogrammetric Study
,”
J. Bone Jt. Surg.
,
75
(
5
), pp.
681
687
.
23.
Renner
,
L.
,
Janz
,
V.
,
Perka
,
C.
, and
Wassilew
,
G. I.
,
2016
, “
What Do We Get From Navigation in Primary THA?
,”
EFORT Open Rev.
,
1
(
5
), pp.
205
210
.
24.
Heller
,
M. O.
,
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
,
2001
, “
Influence of Femoral Anteversion on Proximal Femoral Loading: Measurement and Simulation in Four Patients
,”
Clin. Biomech.
,
16
(
8
), pp.
644
649
.
25.
Umeda
,
N.
,
Saito
,
M.
,
Sugano
,
N.
,
Ohzono
,
K.
,
Nishii
,
T.
,
Sakai
,
T.
,
Yoshikawa
,
H.
,
Ikeda
,
D.
, and
Murakami
,
A.
,
2003
, “
Correlation Between Femoral Neck Version and Strain on the Femur After Insertion of Femoral Prosthesis
,”
J. Orthop. Sci.
,
8
(
3
), pp.
381
386
.
26.
Martelli
,
S.
,
Taddei
,
F.
,
Cristofolini
,
L.
,
Schileo
,
E.
,
Rushton
,
N.
, and
Viceconti
,
M.
,
2011
, “
A New Hip Epiphyseal Prosthesis: Design Revision Driven by a Validated Numerical Procedure
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1203
1211
.
27.
Taylor
,
M.
,
Bryan
,
R.
, and
Galloway
,
F.
,
2013
, “
Accounting for Patient Variability in Finite Element Analysis of the Intact and Implanted Hip and Knee: A Review
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
2
), pp.
273
292
.
28.
Strickland, M. A.
,
Arsene, C. T.
,
Pal, S.
,
Laz, P. J.
, and
Taylor, M.
, 2010, “
A Multi-Platform Comparison of Efficient Probabilistic Methods in the Prediction of Total Knee Replacement Mechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(6), pp. 701–709.
29.
Radcliffe
,
I. A. J.
, and
Taylor
,
M.
,
2007
, “
Investigation Into the Effect of Varus-Valgus Orientation on Load Transfer in the Resurfaced Femoral Head: A Multi-Femur Finite Element Analysis
,”
Clin. Biomech.
,
22
(
7
), pp.
780
786
.
30.
Nicolella
,
D. P.
,
Thacker
,
B. H.
,
Katoozian
,
H.
, and
Davy
,
D. T.
,
2001
, “
Probabilistic Risk Analysis of a Cemented Hip Implant
,”
ASME-Publications Bioengineering Division (BED)
, Vol.
50
, pp.
427
428
.
31.
Martelli
,
S.
,
Taddei
,
F.
,
Schileo
,
E.
,
Cristofolini
,
L.
,
Rushton
,
N.
, and
Viceconti
,
M.
,
2012
, “
Biomechanical Robustness of a New Proximal Epiphyseal Hip Replacement to Patient Variability and Surgical Uncertainties: A FE Study
,”
Med. Eng. Phys.
,
34
(
2
), pp.
161
171
.
32.
Dopico-Gonzalez
,
C.
,
New
,
A. M.
, and
Browne
,
M.
,
2010
, “
A Computational Tool for the Probabilistic Finite Element Analysis of an Uncemented Total Hip Replacement Considering Variability in Bone-Implant Version Angle
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
1
), pp.
1
9
.
33.
Dopico-Gonzalez
,
C.
,
New
,
A. M.
, and
Browne
,
M.
,
2009
, “
Probabilistic Analysis of an Uncemented Total Hip Replacement
,”
Med. Eng. Phys.
,
31
(
4
), pp.
470
476
.
34.
Viceconti
,
M.
,
Brusi
,
G.
,
Pancanti
,
A.
, and
Cristofolini
,
L.
,
2006
, “
Primary Stability of an Anatomical Cementless Hip Stem: A Statistical Analysis
,”
J. Biomech.
,
39
(
7
), pp.
1169
1179
.
35.
Bah
,
M. T.
,
Nair
,
P. B.
, and
Browne
,
M.
,
2010
, “
Rapid Analysis of Implant Positioning Effects in Cementless Total Hip Replacements
,”
17th Congress of the European Society of Biomechanics
, Edinburgh, UK, July 5–8.
36.
Taylor
,
M.
, and
Prendergast
,
P. J.
,
2015
, “
Four Decades of Finite Element Analysis of Orthopaedic Devices: Where are We Now and What are the Opportunities?
,”
J. Biomech.
,
48
(
5
), pp.
767
778
.
37.
Viceconti
,
M.
,
Monti
,
L.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
, and
Toni
,
A.
,
2001
, “
Even a Thin Layer of Soft Tissue May Compromise the Primary Stability of Cementless Hip Stems
,”
Clin. Biomech.
,
16
(
9
), pp.
765
775
.
38.
Dopico-Gonzalez
,
C.
,
New
,
A. M.
, and
Browne
,
M.
,
2010
, “
Probabilistic Finite Element Analysis of the Uncemented Hip Replacement–Effect of Femur Characteristics and Implant Design Geometry
,”
J. Biomech.
,
43
(
3
), pp.
512
520
.
39.
Bah
,
M. T.
,
Nair
,
P. B.
,
Taylor
,
M.
, and
Browne
,
M.
,
2011
, “
Efficient Computational Method for Assessing the Effects of Implant Positioning in Cementless Total Hip Replacements
,”
J. Biomech.
,
44
(
7
), pp.
1417
1422
.
40.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.
41.
Heller
,
M. O.
,
Bergmann
,
G.
,
Kassi
,
J. P.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
,
2005
, “
Determination of Muscle Loading at the Hip Joint for Use in Pre-Clinical Testing
,”
J. Biomech.
,
38
(
5
), pp.
1155
1163
.
42.
Al-Dirini
,
R. M. A.
,
Huff
,
D.
, and
Taylor
,
M.
,
2016
, “
Comparing the Performance of Collared and Collarless Cementless Femoral Stems
,”
Orthopedic Research Society
(
ORS
) Annual Meeting, Orlando, FL, pp. 1185–1195.https://www.researchgate.net/publication/293491646_Comparing_the_Performance_of_Collared_and_Collarless_Cementless_Femoral_Stems
43.
Viceconti
,
M.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
,
Baleani
,
M.
, and
Cristofolini
,
L.
,
2000
, “
Large-Sliding Contact Elements Accurately Predict Levels of Bone-Implant Micromotion Relevant to Osseointegration
,”
J. Biomech.
,
33
(
12
), pp.
1611
1618
.
44.
DePuy Synthes
,
2016
, “
CORAIL Hip System Surgical Technique in Product Rationale and Surgical Technique
,” DePuy Synthes, Raynham, MA.
45.
Eggli
,
S.
,
Pisan
,
M.
, and
Müller
,
M.
,
1998
, “
The Value of Preoperative Planning for Total Hip Arthroplasty
,”
J. Bone Jt. Surg. (Br.)
,
80
(
3
), pp.
382
390
.
46.
Martelli
,
S.
,
Taddei
,
F.
,
Cristofolini
,
L.
,
Gill
,
H. S.
, and
Viceconti
,
M.
,
2011
, “
Extensive Risk Analysis of Mechanical Failure for an Epiphyseal Hip Prothesis: A Combined Numerical–Experimental Approach
,”
Proc. Inst. Mech. Eng., Part H
,
225
(
2
), pp.
126
140
.
47.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Slooff
,
T.
,
1987
, “
Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
,
20
(
11–12
), pp.
1135
1150
.
48.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
124
134
.
49.
Kuiper
,
J. H.
, and
Huiskes
,
R.
,
1997
, “
The Predictive Value of Stress Shielding for Quantification of Adaptive Bone Resorption around Hip Replacements
,”
ASME J. Biomech. Eng.
,
119
(
3
), pp.
228
231
.
50.
Vidalain
,
J. P.
,
2011
, “
Twenty-Year Results of the Cementless Corail Stem
,”
Int. Orthop.
,
35
(
2
), pp.
189
194
.
51.
Vidalain
,
J.-P.
,
Selmi
,
T. A. S.
,
Beverland
,
D.
,
Young
,
S.
,
Board
,
T.
,
Boldt
,
J. G.
, and
Brumby
,
S. A.
,
2011
,
The CORAIL® Hip System: A Practical Approach Based on 25 Years of Experience
,
Springer Science & Business Media
, Berlin.
52.
Sariali
,
E.
,
Mouttet
,
A.
,
Pasquier
,
G.
,
Durante
,
E.
, and
Catone
,
Y.
,
2009
, “
Accuracy of Reconstruction of the Hip Using Computerised Three-Dimensional Pre-Operative Planning and a Cementless Modular Neck
,”
Bone Jt. J.
,
91
(
3
), pp.
333
340
.
53.
Min
,
B.-W.
,
Song
,
K.-S.
,
Bae
,
K.-C.
,
Cho
,
C.-H.
,
Kang
,
C.-H.
, and
Kim
,
S.-Y.
,
2008
, “
The Effect of Stem Alignment on Results of Total Hip Arthroplasty With a Cementless Tapered-Wedge Femoral Component
,”
J. Arthroplasty
,
23
(
3
), pp.
418
423
.
54.
Hodge
,
W.
,
Andriacchi
,
T.
, and
Galante
,
J.
,
1991
, “
A Relationship Between Stem Orientation and Function Following Total Hip Arthroplasty
,”
J. Arthroplasty
,
6
(
3
), pp.
229
235
.
55.
Abdul-Kadir
,
M. R.
,
Hansen
,
U.
,
Klabunde
,
R.
,
Lucas
,
D.
, and
Amis
,
A.
,
2008
, “
Finite Element Modelling of Primary Hip Stem Stability: The Effect of Interference Fit
,”
J. Biomech.
,
41
(
3
), pp.
587
594
.
56.
Solitro
,
G. F.
,
Whitlock
,
K.
,
Amirouche
,
F.
, and
Santis
,
C.
,
2016
, “
Measures of Micromotion in Cementless Femoral Stems-Review of Current Methodologies
,”
Biomater. Biomech. Bioeng.
,
3
(
2
), pp.
85
104
.
57.
Kassi
,
J.-P.
,
Heller
,
M. O.
,
Stoeckle
,
U.
,
Perka
,
C.
, and
Duda
,
G. N.
,
2005
, “
Stair Climbing is More Critical Than Walking in Pre-Clinical Assessment of Primary Stability in Cementless THA In Vitro
,”
J. Biomech.
,
38
(5), pp.
1143
1154
.
You do not currently have access to this content.