Fenestrated endovascular aneurysm repair (FEVAR) is a minimally invasive method of abdominal aortic aneurysm (AAA) repair utilized in patients with complex vessel anatomies. Stent grafts (SG) used in this process contain fenestrations within the device that need to be aligned with the visceral arteries upon successful SG deployment. Proper alignment is crucial to maintain blood flow to these arteries and avoid surgical complications. During fenestrated SG deployment, rotation of the SG can occur during the unsheathing process. This leads to misalignment of the vessels, and the fenestrations and is associated with poor clinical outcomes. The aim of this study was to develop a computational model of the FEVAR process to predict SG rotation. Six patient-specific cases are presented and compared with surgical case data. Realistic material properties, frictional effects, deployment methods, and boundary conditions are included in the model. A mean simulation error of 2 deg (range 1–4 deg) was observed. This model was then used to conduct a parameter study of frictional properties to see if rotation could be minimized. This study showed that increasing or decreasing the coefficients of friction (COF) between the sheath and the vessel walls would decrease the amount of rotation observed. Our model accurately predicts the amount of SG rotation observed during FEVAR and can be used as a preoperative planning tool within the surgical workflow.

References

References
1.
Nordon
,
I. M.
,
Hinchcliffe
,
R. J.
,
Loftus
,
I. M.
, and
Thompson
,
M. M.
,
2011
, “
Pathophysiology and Epidemiology of Abdominal Aortic Aneurysms
,”
Nat. Rev. Cardiol.
,
8
(
2
), pp.
92
102
.
2.
Kuivanieme
,
H.
,
Platsoucas
,
C. D.
, and
Tilson
,
M. D.
,
2008
, “
Aortic Aneurysms: An Immune Disease With a Strong Genetic Component
,”
Circulation
,
117
(
2
), pp.
242
252
.
3.
Crawford
,
S. A.
,
Sanford
,
R. M.
,
Doyle
,
M. G.
,
Amon
,
C. H.
, and
Forbes
,
T. L.
,
2016
, “
Understanding and Predicting Endovascular Device Rotation
,”
J. Vasc. Surg.
,
64
(
5
), p.
1547
.
4.
Crawford
,
S. A.
,
Sanford
,
R. M.
,
Doyle
,
M. G.
,
Wheatcroft
,
M.
,
Amon
,
C. H.
, and
Forbes
,
T. L.
,
2018
, “
Prediction of Advanced Endovascular Stent Graft Rotation and Its Associated Morbidity and Mortality
,”
J. Vasc. Surg.
, in press.
5.
Doyle
,
M. G.
,
Crawford
,
S. A.
,
Osman
,
E.
,
Eisenberg
,
N.
,
Tse
,
L. W.
,
Amon
,
C. H.
, and
Forbes
,
T. L.
,
2018
, “
Analysis of Iliac Artery Geometric Properties in Fenestrated Aortic Stent Graft Rotation
,”
Vasc. Endovasc. Surg.
,
52
(
3
), pp.
188
194
.
6.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
Performance of Self-Expanding Nitinol Stent in a Curved Artery: Impact of Stent Length and Deployment Orientation
,”
ASME J. Biomech. Eng.
,
134
(
7
), p.
071007
.
7.
Shek
,
T. L.
,
Tse
,
L. W.
,
Nobovati
,
A.
, and
Amon
,
C. H.
,
2012
, “
Computational Fluid Dynamics Evaluation of the Cross-Limbed Stent Graft Configuration for Endovascular Aneurysm Repair
,”
ASME J. Biomech. Eng.
,
134
(
12
), p.
121002
.
8.
Li
,
Z.
, and
Kleinstreuer
,
C.
,
2005
, “
Fluid-Structure Interaction Effects on Sac-Blood Pressure and Wall Stress in a Stented Aneurysm
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
662
671
.
9.
Xiang
,
J.
,
Damiano
,
R. J.
,
Lin
,
N.
,
Snyder
,
K. V.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
, and
Meng
,
H.
,
2015
, “
High-Fidelity Virtual Stenting: Modeling of Flow Diverter Deployment for Hemodynamic Characterization of Complex Intracranial Aneurysms
,”
J. Neurosurg.
,
123
(
4
), pp.
832
840
.
10.
Babiker
,
M. H.
,
Chong
,
B.
,
Gonzalez
,
L. F.
,
Cheema
,
S.
, and
Frakes
,
D. H.
,
2013
, “
Finite Element Modeling of Embolic Coil Deployment: Multifactor Characterization of Treatment Effects on Cerebral Aneurysm Hemodynamics
,”
J. Biomech.
,
46
(
16
), pp.
2809
2816
.
11.
Roszelle
,
B. N.
,
Gonzalez
,
L. F.
,
Babiker
,
M. H.
,
Ryan
,
J.
,
Albuquerque
,
F. C.
, and
Frakes
,
D. H.
,
2013
, “
Flow Diverter Effect on Cerebral Aneurysm Hemodynamics: An In Vitro Comparison of Telescoping Stents and the Pipeline
,”
Neuroradiology
,
55
(
6
), pp.
751
758
.
12.
De Bock
,
S.
,
Iannaccone
,
F.
,
De Beule
,
M.
,
Van Loo
,
D.
,
Devos
,
D.
,
Vermassen
,
F.
,
Segers
,
P.
, and
Verhegghe
,
B.
,
2012
, “
Virtual Evaluation of Stent Graft Deployment: A Validated Modeling and Simulation Study
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
129
139
.
13.
Demanget
,
N.
,
Duprey
,
A.
,
Badel
,
P.
,
Orgeas
,
L.
,
Avril
,
S.
,
Geindreau
,
C.
,
Albertini
,
J.-N.
, and
Favre
,
J. P.
,
2013
, “
Finite Element Analysis of the Mechanical Performances of 8 Marketed Aortic Stent-Grafts
,”
J. Endovasc. Ther.
,
20
(
4
), pp.
523
535
.
14.
Perrin
,
D.
,
Badel
,
P.
,
Orgeas
,
L.
,
Geindreau
,
C.
,
rolland du Roscoat
,
S.
,
Albertini
,
J.-N.
, and
Avril
,
S.
,
2016
, “
Patient-Specific Simulation of Endovascular Repair Surgery With Tortuous Aneurysms Requiring Flexible Stent-Grafts
,”
J. Mech. Behav. Biomed. Mater.
,
63
, pp.
86
99
.
15.
Desender
,
L. M.
,
Van Herzeele
,
I.
,
Lachat
,
M. L.
,
Rancic
,
Z.
,
Duchateau
,
J.
,
Rudarakanchana
,
N.
,
Bicknell
,
C. D.
,
Heyligers
,
J. M. M.
,
Teijink
,
J. A. W.
, and
Vermassen
,
F. E.
,
2016
, “
Patient Specific Rehearsal before EVAR: Influence on Technical and Nontechnical Operative Performance. A Randomized Controlled Trial
,”
Ann. Surg.
,
264
(
5
), pp.
703
709
.
16.
Perrin
,
D.
,
Badel
,
P.
,
Orgeas
,
L.
,
Geindreau
,
C.
,
Dumenil
,
A.
,
Albertini
,
J.-N.
, and
Avril
,
S.
,
2015
, “
Patient Specific Numerical Simulation of Stent-Graft Deployment: Validation on Three Clinical Cases
,”
J. Biomech.
,
48
(
10
), pp.
1868
1875
.
17.
Roy
,
D.
,
Holzapfel
,
G.
,
Kauffman
,
C.
, and
Soulez
,
G.
,
2014
, “
Finite Element Analysis of Abdominal Aortic Aneurysms: Geometrical and Structural Reconstruction With Application of an Anisotropic Material Model
,”
IMA J. Appl. Math.
,
79
(
5
), pp.
1011
1026
.
18.
LSTC
,
2015
, “
LS-DYNA Keyword User's Manual
,”
Livermore Software Technology Corporation
,
Livermore, CA
.
19.
Orobix
, 2018, “
What is VMTK
,” Orobix, Bergamo, Italy, accessed Mar. 17, 2017 http://www.vmtk.org/what-is-vmtk.html
20.
Schulze-Bauer
,
C. A.
,
Morth
,
C.
, and
Holzapfel
,
G. A.
,
2003
, “
Passive Biaxial Mechanical Response of Aged Human Iliac Arteries
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
395
406
.
21.
Sanford
,
R. M.
,
2017
, “
Computational Simulations of Fenestrated Endovascular Aneurysm Repair
,”
M.Sc. thesis
, University of Toronto, Toronto, ON, Canada.https://tspace.library.utoronto.ca/handle/1807/79289
22.
Cook Medical
, 2012, “
Lunderquist; Extra-Stiff Wire Guide
,” Cook Medical, Bloomington, IN, accessed Apr. 13, 2017, https://www.cookmedical.com/data/resources/AI-BM-LUNDS-EN-201202WEB.pdf
23.
Cook Medical
,
2016
, “
Zenith Fenestrated Endovascular Graft; Annual Clinical Update
,”
Cook Medical
,
Bloomington, IN
.
24.
Roy
,
D.
,
Lerouge
,
S.
,
Inaekyan
,
K.
,
Kauffman
,
C.
,
Mongrain
,
R.
, and
Soulez
,
G.
,
2016
, “
Experimental Validation of More Realistic Computer Models for Stent-Graft Repair of Abdominal Aortic Aneurysms, Including Pre-Load Assessment
,”
Int. J. Numer. Method. Biomed. Eng.
,
32
(
12
), p.
e02769
.
25.
Kamenskiy
,
A. V.
,
Dzenis
,
Y. A.
,
Jaffar Kazmi
,
S. A.
,
Pemberton
,
M. A.
,
Pipinos
,
I. I.
,
Phillips
,
N. Y.
,
Herber
,
K.
,
Woodford
,
T.
,
Bowen
,
R. E.
,
Lomneth
,
C. S.
, and
MacTaggart
,
J. N.
,
2014
, “
Biaxial Mechanical Properties of the Human Thoracic and Abdominal Aorta, Common Carotid, Subclavian, Renal, and Common Iliac Arteries
,”
Biomech. Model. Mechanobiol.
,
13
(
6
), pp.
1341
1359
.
26.
Roy
,
D.
,
Lerouge
,
S.
,
Kauffmann
,
C.
,
Mongrain
,
R.
, and
Soulez
,
G.
,
2014
, “
Simulation of a Complete Stent-Graft Deployment in a Patient-Specific Abdominal Aortic Aneurysm
,”
Seventh World Congress of Biomechanics
, Boston, MA, July 6–11, p. 376.https://www.researchgate.net/profile/David_Roy11/publication/264167552_Simulation_of_a_complete_stent-graft_deployment_in_a_patient-specific_abdominal_aortic_aneurysm/links/53d0fd010cf2fd75bc5d5897/Simulation-of-a-complete-stent-graft-deployment-in-a-patient-specific-abdominal-aortic-aneurysm.pdf
27.
Cook Medical
,
2016
, “
Physicians Pocket Reference Guide
,”
Cook Medical
,
Bloomington, IN
.
28.
Doyle
,
M. G.
,
Lancaster
,
M.
,
Tse
,
L. W.
,
Forbes
,
T. L.
, and
Amon
,
C. H.
,
2016
, “
Measurement of Aortic Stent Graft Coefficients of Friction
,”
Summer Biomechanics, Bioengineering and Biotransport Conference
, National Harbor, MD, June 29–July 2.
29.
Vad
,
S.
,
Eskinazi
,
A.
,
Corbett
,
T.
,
McLoughlin
,
T.
, and
Vande Geest
,
J. P.
,
2010
, “
Determination of Coefficient of Friction for Self-Expanding Stent-Grafts
,”
ASME J. Biomech. Eng.
,
132
(
12
), p.
121007
.
30.
Sturla
,
F.
,
Ronzoni
,
M.
,
Vitali
,
M.
,
Dimasi
,
A.
,
Vismara
,
R.
,
Preston Maher
,
G.
,
Burriesci
,
G.
,
Votta
,
E.
, and
Redaelli
,
A.
,
2016
, “
Impact of Different Aortic Valve Calcification Patterns on the Outcome of Transcatheter Aortic Valve Implantation: A Finite Element Study
,”
J. Biomech.
,
49
(
12
), pp.
2520
2530
.
31.
Crawford
,
S. A.
,
Doyle
,
M. G.
,
Tse
,
L. W.
, and
Roche-Nagle
,
G.
,
2016
, “
In-Stock' Fenestrated Stent Graft for the Urgent Repair of an Abdominal Aortic Aneurysm
,”
BMJ Case Rep
.
32.
Cronenwett
,
J.
,
Murphy
,
T.
,
Zelenock
,
G.
,
Whitehouse
,
W. J.
,
Lindenauer
,
S.
,
Graham
,
L.
,
Quint
,
L.
,
Silver
,
T.
, and
Stanley
,
J.
,
1985
, “
Actuarial Analysis of Variables Associated With Rupture of Small Abdominal Aortic Aneurysms
,”
Surgery
,
98
(3), pp.
472
483
.http://europepmc.org/abstract/med/3898453
33.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(1–3), pp.
1
48
.
34.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
The Effects of Aneurysm on the Biaxial Mechanical Behaviour of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.
35.
Speelman
,
L.
,
Bohra
,
A.
,
Bosboom
,
E. M. H.
,
Schurink
,
G. W. H.
,
van de Vosse
,
F. N.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2007
, “
Effects of Wall Calcifications in Patient-Specific Wall Stress Analyses of Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
129
(
1
), pp.
105
109
.
36.
Maier
,
A.
,
Gee
,
M.
,
Reeps
,
C.
,
Eckstein
,
H.-H.
, and
Wall
,
W.
,
2010
, “
Impact of Calcifications on Patient-Specific Wall Stress Analysis of Abdominal Aortic Aneurysms
,”
Biomech. Model. Mechanobiol.
,
9
(
5
), pp.
511
521
.
37.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
A Planar Biaxial Constitutive Relation for the Luminal Layer of Intra-Luminal Thrombus in Abdominal Aortic Aneurysm
,”
J. Biomech.
,
39
(
13
), pp.
2347
2354
.
38.
Wang
,
D. H.
,
Makaroun
,
M.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2001
, “
Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
536
539
.
You do not currently have access to this content.