The optimal method to integrate scaffolds with articular cartilage has not yet been identified, in part because of our lack of understanding about the mechanobiological conditions at the interface. Our objective was to quantify the effect of mechanical loading on integration between a scaffold and articular cartilage. We hypothesized that increased number of loading cycles would have a detrimental effect on interface integrity. The following models were developed: (i) an in vitro scaffold–cartilage explant system in which compressive sinusoidal loading cycles were applied for 14 days at 1 Hz, 5 days per week, for either 900, 1800, 3600, or 7200 cycles per day and (ii) an in silico inhomogeneous, biphasic finite element model (bFEM) of the scaffold–cartilage construct that was used to characterize interface micromotion, stress, and fluid flow under the prescribed loading conditions. In accordance with our hypothesis, mechanical loading significantly decreased scaffold–cartilage interface strength compared to unloaded controls regardless of the number of loading cycles. The decrease in interfacial strength can be attributed to abrupt changes in vertical displacement, fluid pressure, and compressive stresses along the interface, which reach steady-state after only 150 cycles of loading. The interfacial mechanical conditions are further complicated by the mismatch between the homogeneous properties of the scaffold and the depth-dependent properties of the articular cartilage. Finally, we suggest that mechanical conditions at the interface can be more readily modulated by increasing pre-incubation time before the load is applied, as opposed to varying the number of loading cycles.

References

References
1.
Simon
,
T. M.
, and
Jackson
,
D. W.
,
2006
, “
Articular Cartilage: Injury Pathways and Treatment Options
,”
Sports Med. Arthroscopy Rev.
,
14
(
3
), pp.
146
154
.
2.
Flanigan
,
D. C.
,
Harris
,
J. D.
,
Trinh
,
T. Q.
,
Siston
,
R. A.
, and
Brophy
,
R. H.
,
2010
, “
Prevalence of Chondral Defects in Athletes' Knees: A Systematic Review
,”
Med. Sci. Sports Exercise
,
42
(
10
), pp.
1795
1801
.
3.
Kotlarz
,
H.
,
Gunnarsson
,
C. L.
,
Fang
,
H.
, and
Rizzo
,
J. A.
,
2009
, “
Insurer and Out-of-Pocket Costs of Osteoarthritis in the U.S.: Evidence From National Survey Data
,”
Arthritis Rheum.
,
60
(
12
), pp.
3546
3553
.
4.
Freedman
,
K. B.
,
Nho
,
S. J.
, and
Cole
,
B. J.
,
2003
, “
Marrow Stimulating Technique to Augment Meniscus Repair
,”
Arthroscopy
,
19
(
7
), pp.
794
798
.
5.
Szerb
,
I.
,
Hangody
,
L.
,
Duska
,
Z.
, and
Kaposi
,
N. P.
,
2005
, “
Mosaicplasty: Long-Term Follow-Up
,”
Bull. Hosp. Jt. Dis.
,
63
(
1–2
), pp.
54
62
.http://hjdbulletin.org/files/archive/pdfs/604.pdf
6.
Bedi
,
A.
,
Feeley
,
B. T.
, and
Williams
,
R. J.
,
2010
, “
Management of Articular Cartilage Defects of the Knee
,”
J. Bone Jt. Surg. Am.
,
92
(
4
), pp.
994
1009
.
7.
Brittberg
,
M.
,
Peterson
,
L.
,
Sjogren-Jansson
,
E.
,
Tallheden
,
T.
, and
Lindahl
,
A.
,
2003
, “
Articular Cartilage Engineering With Autologous Chondrocyte Transplantation. A Review of Recent Developments
,”
J. Bone Jt. Surg. Am.
,
85A
(
Suppl. 3
), pp.
109
115
.https://journals.lww.com/jbjsjournal/Citation/2003/00003/ARTICULAR_CARTILAGE_ENGINEERING_WITH_AUTOLOGOUS.17.aspx
8.
Widuchowski
,
W.
,
Lukasik
,
P.
,
Kwiatkowski
,
G.
,
Faltus
,
R.
,
Szyluk
,
K.
,
Widuchowski
,
J.
, and
Koczy
,
B.
,
2008
, “
Isolated Full Thickness Chondral Injuries. Prevalance and Outcome of Treatment. A Retrospective Study of 5233 Knee Arthroscopies
,”
Acta Chir. Orthop. Traumatol. Cech.
,
75
(
5
), pp.
382
386
.http://www.achot.cz/dwnld/0805_382.pdf
9.
Mithoefer
,
K.
,
Hambly
,
K.
,
Della Villa
,
S.
,
Silvers
,
H.
, and
Mandelbaum
,
B. R.
,
2009
, “
Return to Sports Participation After Articular Cartilage Repair in the Knee: Scientific Evidence
,”
Am. J. Sports Med.
,
37
(
Suppl. 1
), pp.
167
176
.
10.
Moseley
,
J. B.
, Jr.,
Anderson
,
A. F.
,
Browne
,
J. E.
,
Mandelbaum
,
B. R.
,
Micheli
,
L. J.
,
Fu
,
F.
, and
Erggelet
,
C.
,
2010
, “
Long-Term Durability of Autologous Chondrocyte Implantation: A Multicenter, Observational Study in U.S. Patients
,”
Am. J. Sports Med.
,
38
(
2
), pp.
238
246
.
11.
Solheim
,
E.
,
Hegna
,
J.
,
Oyen
,
J.
,
Austgulen
,
O. K.
,
Harlem
,
T.
, and
Strand
,
T.
,
2010
, “
Osteochondral Autografting (Mosaicplasty) in Articular Cartilage Defects in the Knee: Results at 5 to 9 Years
,”
Knee
,
17
(
1
), pp.
84
87
.
12.
Frenkel
,
S. R.
, and
Di Cesare
,
P. E.
,
2004
, “
Scaffolds for Articular Cartilage Repair
,”
Ann. Biomed. Eng.
,
32
(
1
), pp.
26
34
.
13.
Athanasiou
,
K. A.
,
Responte
,
D. J.
,
Brown
,
W. E.
, and
Hu
,
J. C.
,
2015
, “
Harnessing Biomechanics to Develop Cartilage Regeneration Strategies
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020901
.
14.
Boushell
,
M. K.
,
Hung
,
C. T.
,
Hunziker
,
E. B.
,
Strauss
,
E. J.
, and
Lu
,
H. H.
,
2017
, “
Current Strategies for Integrative Cartilage Repair
,”
Connect. Tissue Res.
,
58
(
5
), pp.
393
406
.
15.
Pabbruwe
,
M. B.
,
Esfandiari
,
E.
,
Kafienah
,
W.
,
Tarlton
,
J. F.
, and
Hollander
,
A. P.
,
2009
, “
Induction of Cartilage Integration by a Chondrocyte/Collagen-Scaffold Implant
,”
Biomaterials
,
30
(
26
), pp.
4277
4286
.
16.
Fortier
,
L. A.
,
Nixon
,
A. J.
, and
Lust
,
G.
,
2002
, “
Phenotypic Expression of Equine Articular Chondrocytes Grown in Three-Dimensional Cultures Supplemented With Supraphysiologic Concentrations of Insulin-Like Growth Factor-1
,”
Am. J. Vet. Res.
,
63
(
2
), pp.
301
305
.
17.
Luo
,
Z.
,
Jiang
,
L.
,
Xu
,
Y.
,
Li
,
H.
,
Xu
,
W.
,
Wu
,
S.
,
Wang
,
Y.
,
Tang
,
Z.
,
Lv
,
Y.
, and
Yang
,
L.
,
2015
, “
Mechano Growth Factor (MGF) and Transforming Growth Factor (TGF)-beta3 Functionalized Silk Scaffolds Enhance Articular Hyaline Cartilage Regeneration in Rabbit Model
,”
Biomaterials
,
52
, pp.
463
475
.
18.
Maher
,
S. A.
,
Mauck
,
R. L.
,
Rackwitz
,
L.
, and
Tuan
,
R. S.
,
2010
, “
A Nanofibrous Cell-Seeded Hydrogel Promotes Integration in a Cartilage Gap Model
,”
J. Tissue Eng. Regener Med.
,
4
(
1
), pp.
25
29
.
19.
Allon
,
A. A.
,
Ng
,
K. W.
,
Hammoud
,
S.
,
Russell
,
B. H.
,
Jones
,
C. M.
,
Rivera
,
J. J.
,
Schwartz
,
J.
,
Hook
,
M.
, and
Maher
,
S. A.
,
2012
, “
Augmenting the Articular Cartilage-Implant Interface: Functionalizing With a Collagen Adhesion Protein
,”
J. Biomed. Mater. Res. A
,
100
(
8
), pp.
2168
2175
.
20.
Ng
,
K. W.
,
Wanivenhaus
,
F.
,
Chen
,
T.
,
Hsu
,
H. C.
,
Allon
,
A. A.
,
Abrams
,
V. D.
,
Torzilli
,
P. A.
,
Warren
,
R. F.
, and
Maher
,
S. A.
,
2012
, “
A Novel Macroporous Polyvinyl Alcohol Scaffold Promotes Chondrocyte Migration and Interface Formation in an In Vitro Cartilage Defect Model
,”
Tissue Eng. Part A
,
18
(
11–12
), pp.
1273
1281
.
21.
Hunziker
,
E. B.
, and
Kapfinger
,
E.
,
1998
, “
Removal of Proteoglycans From the Surface of Defects in Articular Cartilage Transiently Enhances Coverage by Repair Cells
,”
J. Bone Jt. Surg., Br. Vol.
,
80
(
1
), pp.
144
150
.
22.
Wernike
,
E.
,
Li
,
Z.
,
Alini
,
M.
, and
Grad
,
S.
,
2008
, “
Effect of Reduced Oxygen Tension and Long-Term Mechanical Stimulation on Chondrocyte-Polymer Constructs
,”
Cell Tissue Res.
,
331
(
2
), pp.
473
483
.
23.
Ng
,
K. W.
,
Mauck
,
R. L.
,
Wang
,
C. C.
,
Kelly
,
T. A.
,
Ho
,
M. M.
,
Chen
,
F. H.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2009
, “
Duty Cycle of Deformational Loading Influences the Growth of Engineered Articular Cartilage
,”
Cell Mol. Bioeng.
,
2
(
3
), pp.
386
394
.
24.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.
25.
Torzilli
,
P. A.
,
1990
, “
Measurement of the Compressive Properties of Thin Cartilage Slices: Evaluating Tissue Inhomogeneity
,”
Methods in Cartilage Research
,
A.
Maroudas
and
K.
Kuettner
, eds.,
Academic Press
,
London
, pp.
304
308
.
26.
Torzilli
,
P. A.
,
Bhargava
,
M.
, and
Chen
,
C. T.
,
2011
, “
Mechanical Loading of Articular Cartilage Reduces IL-1-Induced Enzyme Expression
,”
Cartilage
,
2
(
4
), pp.
364
373
.
27.
van de Breevaart Bravenboer
,
J.
,
In der Maur
,
C. D.
,
Bos
,
P. K.
,
Feenstra
,
L.
,
Verhaar
,
J. A.
,
Weinans
,
H.
, and
van Osch
,
G. J.
,
2004
, “
Improved Cartilage Integration and Interfacial Strength After Enzymatic Treatment in a Cartilage Transplantation Model
,”
Arthritis Res. Ther.
,
6
(
5
), pp.
R469
R476
.
28.
Farndale
,
R. W.
,
Sayers
,
C. A.
, and
Barrett
,
A. J.
,
1982
, “
A Direct Spectrophotometric Microassay for Sulfated Glycosaminoglycans in Cartilage Cultures
,”
Connect. Tissue Res.
,
9
(
4
), pp.
247
248
.
29.
Reddy
,
G. K.
, and
Enwemeka
,
C. S.
,
1996
, “
A Simplified Method for the Analysis of Hydroxyproline in Biological Tissues
,”
Clin. Biochem.
,
29
(
3
), pp.
225
229
.
30.
Brown
,
D. A.
,
Chou
,
Y. F.
,
Beygui
,
R. E.
,
Dunn
,
J. C.
, and
Wu
,
B. M.
,
2005
, “
Gelatin-Embedded Cell-Polymer Constructs for Histological Cryosectioning
,”
J. Biomed. Mater. Res. B
,
72
(
1
), pp.
79
85
.
31.
Ng
,
K. W.
,
Torzilli
,
P. A.
,
Warren
,
R. F.
, and
Maher
,
S. A.
,
2014
, “
Characterization of a Macroporous Polyvinyl Alcohol Scaffold for the Repair of Focal Articular Cartilage Defects
,”
J. Tissue Eng. Regener Med.
,
8
(
2
), pp.
164
168
.
32.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
,
2001
, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
(
1
), pp.
1
12
.
33.
Guo
,
H.
,
Maher
,
S. A.
, and
Spilker
,
R. L.
,
2013
, “
Biphasic Finite Element Contact Analysis of the Knee Joint Using an Augmented Lagrangian Method
,”
Med. Eng. Phys.
,
35
(
9
), pp.
1313
1320
.
34.
Guo
,
H.
,
Nickel
,
J. C.
,
Iwasaki
,
L. R.
, and
Spilker
,
R. L.
,
2012
, “
An Augmented Lagrangian Method for Sliding Contact of Soft Tissue
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
084503
.
35.
Guo
,
H.
, and
Spilker
,
R. L.
,
2011
, “
Biphasic Finite Element Modeling of Hydrated Soft Tissue Contact Using an Augmented Lagrangian Method
,”
ASME J. Biomech. Eng.
,
133
(
11
), p.
111001
.
36.
Guo
,
H.
, and
Spilker
,
R. L.
,
2014
, “
An Augmented Lagrangian Finite Element Formulation for 3D Contact of Biphasic Tissues
,”
Comput. Methods Biomech. Biomed. Engin.
,
17
(
11
), pp.
1206
1216
.
37.
Yu
,
F.
,
Cao
,
X.
,
Du
,
J.
,
Wang
,
G.
, and
Chen
,
X.
,
2015
, “
Multifunctional Hydrogel With Good Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining Diels-Alder Click Reaction and Acylhydrazone Bond
,”
ACS Appl. Mater. Interfaces
,
7
(
43
), pp.
24023
24031
.
38.
Sharma
,
B.
,
Fermanian
,
S.
,
Gibson
,
M.
,
Unterman
,
S.
,
Herzka
,
D. A.
,
Cascio
,
B.
,
Coburn
,
J.
,
Hui
,
A. Y.
,
Marcus
,
N.
,
Gold
,
G. E.
, and
Elisseeff
,
J. H.
,
2013
, “
Human Cartilage Repair With a Photoreactive Adhesive-Hydrogel Composite
,”
Sci. Transl. Med.
,
5
(
167
), p.
167ra6
.
39.
Rackwitz
,
L.
,
Djouad
,
F.
,
Janjanin
,
S.
,
Noth
,
U.
, and
Tuan
,
R. S.
,
2014
, “
Functional Cartilage Repair Capacity of De-Differentiated, Chondrocyte- and Mesenchymal Stem Cell-Laden Hydrogels In Vitro
,”
Osteoarthritis Cartilage
,
22
(
8
), pp.
1148
1157
.
40.
Erickson
,
I. E.
,
Kestle
,
S. R.
,
Zellars
,
K. H.
,
Dodge
,
G. R.
,
Burdick
,
J. A.
, and
Mauck
,
R. L.
,
2012
, “
Improved Cartilage Repair Via In Vitro Pre-Maturation of MSC-Seeded Hyaluronic Acid Hydrogels
,”
Biomed. Mater.
,
7
(
2
), p.
024110
.
41.
Makris
,
E. A.
,
MacBarb
,
R. F.
,
Paschos
,
N. K.
,
Hu
,
J. C.
, and
Athanasiou
,
K. A.
,
2014
, “
Combined Use of Chondroitinase-ABC, TGF-beta1, and Collagen Crosslinking Agent Lysyl Oxidase to Engineer Functional Neotissues for Fibrocartilage Repair
,”
Biomaterials
,
35
(
25
), pp.
6787
6796
.
42.
Bedi
,
A.
,
Kelly
,
N. H.
,
Baad
,
M.
,
Fox
,
A. J.
,
Brophy
,
R. H.
,
Warren
,
R. F.
, and
Maher
,
S. A.
,
2010
, “
Dynamic Contact Mechanics of the Medial Meniscus as a Function of Radial Tear, Repair, and Partial Meniscectomy
,”
J. Bone Jt. Surg. Am.
,
92
(
6
), pp.
1398
1408
.
43.
Wang
,
H.
,
Chen
,
T.
,
Torzilli
,
P.
,
Warren
,
R.
, and
Maher
,
S.
,
2014
, “
Dynamic Contact Stress Patterns on the Tibial Plateaus During Simulated Gait: A Novel Application of Normalized Cross Correlation
,”
J. Biomech.
,
47
(
2
), pp.
568
574
.
44.
Kobayashi
,
M.
,
2004
, “
A Study of Polyvinyl Alcohol-Hydrogel (PVA-H) Artificial Meniscus In Vivo
,”
Biomed. Mater. Eng.
,
14
(
4
), pp.
505
515
.https://content.iospress.com/articles/bio-medical-materials-and-engineering/bme327
45.
Kobayashi
,
M.
,
Chang
,
Y. S.
, and
Oka
,
M.
,
2005
, “
A Two Year In Vivo Study of Polyvinyl Alcohol-Hydrogel (PVA-H) Artificial Meniscus
,”
Biomaterials
,
26
(
16
), pp.
3243
3248
.
46.
Kobayashi
,
M.
, and
Oka
,
M.
,
2004
, “
Characterization of a Polyvinyl Alcohol-Hydrogel Artificial Articular Cartilage Prepared by Injection Molding
,”
J. Biomater. Sci. Polym. Ed.
,
15
(
6
), pp.
741
751
.
47.
Kobayashi
,
M.
,
Toguchida
,
J.
, and
Oka
,
M.
,
2003
, “
Preliminary Study of Polyvinyl Alcohol-Hydrogel (PVA-H) Artificial Meniscus
,”
Biomaterials
,
24
(
4
), pp.
639
647
.
48.
Swieszkowski
,
W.
,
Ku
,
D. N.
,
Bersee
,
H. E.
, and
Kurzydlowski
,
K. J.
,
2006
, “
An Elastic Material for Cartilage Replacement in an Arthritic Shoulder Joint
,”
Biomaterials
,
27
(
8
), pp.
1534
1541
.
49.
Joshi
,
A.
,
Fussell
,
G.
,
Thomas
,
J.
,
Hsuan
,
A.
,
Lowman
,
A.
,
Karduna
,
A.
,
Vresilovic
,
E.
, and
Marcolongo
,
M.
,
2006
, “
Functional Compressive Mechanics of a PVA/PVP Nucleus Pulposus Replacement
,”
Biomaterials
,
27
(
2
), pp.
176
184
.
50.
Thomas
,
J.
,
Lowman
,
A.
, and
Marcolongo
,
M.
,
2003
, “
Novel Associated Hydrogels for Nucleus Pulposus Replacement
,”
J. Biomed. Mater. Res. A
,
67
(
4
), pp.
1329
1337
.
51.
Wazen
,
R. M.
,
Currey
,
J. A.
,
Guo
,
H.
,
Brunski
,
J. B.
,
Helms
,
J. A.
, and
Nanci
,
A.
,
2013
, “
Micromotion-Induced Strain Fields Influence Early Stages of Repair at Bone-Implant Interfaces
,”
Acta Biomater.
,
9
(
5
), pp.
6663
6674
.
52.
Chen
,
T.
,
Wang
,
H.
,
Warren
,
R.
, and
Maher
,
S.
,
2017
, “
Loss of ACL Function Leads to Alterations in Tibial Plateau Common Dynamic Contact Stress Profiles
,”
J. Biomech.
,
61
, pp.
275
279
.
53.
Bian
,
L.
,
Lima
,
E. G.
,
Angione
,
S. L.
,
Ng
,
K. W.
,
Williams
,
D. Y.
,
Xu
,
D.
,
Stoker
,
A. M.
,
Cook
,
J. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2008
, “
Mechanical and Biochemical Characterization of Cartilage Explants in Serum-Free Culture
,”
J. Biomech.
,
41
(
6
), pp.
1153
1159
.
54.
Krych
,
A. J.
,
Wanivenhaus
,
F.
,
Ng
,
K. W.
,
Doty
,
S.
,
Warren
,
R. F.
, and
Maher
,
S. A.
,
2013
, “
Matrix Generation Within a Macroporous Non-Degradable Implant for Osteochondral Defects is Not Enhanced With Partial Enzymatic Digestion of the Surrounding Tissue: Evaluation in an In Vivo Rabbit Model
,”
J. Mater. Sci. Mater. Med.
,
24
(
10
), pp.
2429
2437
.
You do not currently have access to this content.