Cerebrospinal fluid (CSF) dynamics are thought to play a vital role in central nervous system (CNS) physiology. The objective of this study was to investigate the impact of spinal cord (SC) nerve roots (NR) on CSF dynamics. A subject-specific computational fluid dynamics (CFD) model of the complete spinal subarachnoid space (SSS) with and without anatomically realistic NR and nonuniform moving dura wall deformation was constructed. This CFD model allowed detailed investigation of the impact of NR on CSF velocities that is not possible in vivo using magnetic resonance imaging (MRI) or other noninvasive imaging methods. Results showed that NR altered CSF dynamics in terms of velocity field, steady-streaming, and vortical structures. Vortices occurred in the cervical spine around NR during CSF flow reversal. The magnitude of steady-streaming CSF flow increased with NR, in particular within the cervical spine. This increase was located axially upstream and downstream of NR due to the interface of adjacent vortices that formed around NR.

References

References
1.
Yildiz
,
S.
,
Thyagaraj
,
S.
,
Jin
,
N.
,
Zhong
,
X.
,
Heidari Pahlavian
,
S.
,
Martin
,
B. A.
,
Loth
,
F.
,
Oshinski
,
J.
, and
Sabra
,
K. G.
,
2017
, “
Quantifying the Influence of Respiration and Cardiac Pulsations on Cerebrospinal Fluid Dynamics Using Real-Time Phase-Contrast MRI
,”
J. Magn. Reson. Imaging, Press
,
46
(12), pp.
431
439
.
2.
Chen
,
L.
,
Beckett
,
A.
,
Verma
,
A.
, and
Feinberg
,
D. A.
,
2015
, “
Dynamics of Respiratory and Cardiac CSF Motion Revealed With Real-Time Simultaneous Multi-Slice EPI Velocity Phase Contrast Imaging
,”
Neuroimage
,
122
, pp.
281
287
.
3.
Baledent
,
O.
,
Henry-Feugeas
,
M. C.
, and
Idy-Peretti
,
I.
,
2001
, “
Cerebrospinal Fluid Dynamics and Relation With Blood Flow: A Magnetic Resonance Study With Semiautomated Cerebrospinal Fluid Segmentation
,”
Invest. Radiol.
,
36
(
7
), pp.
368
377
.
4.
Wostyn
,
P.
,
Audenaert
,
K.
, and
De Deyn
,
P. P.
,
2009
, “
More Advanced Alzheimer's Disease May Be Associated With a Decrease in Cerebrospinal Fluid Pressure
,”
Cerebrospinal Fluid Res.
,
6
(
1
), p. 14.
5.
Takizawa
,
K.
,
Matsumae
,
M.
,
Hayashi
,
N.
,
Hirayama
,
A.
,
Yatsushiro
,
S.
, and
Kuroda
,
K.
,
2017
, “
Hyperdynamic CSF Motion Profiles Found in Idiopathic Normal Pressure Hydrocephalus and Alzheimer's Disease Assessed by Fluid Mechanics Derived From Magnetic Resonance Images
,”
Fluids Barriers CNS
,
14
(
1
), p. 29.
6.
Martin
,
B. A.
,
Labuda
,
R.
,
Royston
,
T. J.
,
Oshinski
,
J. N.
,
Iskandar
,
B.
, and
Loth
,
F.
,
2010
, “
Spinal Subarachnoid Space Pressure Measurements in an In Vivo Spinal Stenosis Model: Implications on Syringomyelia Theories
,”
ASME J. Biomech. Eng.
,
132
(
11
), p. 111007.
7.
Yeo
,
J.
,
Cheng
,
S.
,
Hemley
,
S.
,
Lee
,
B. B.
,
Stoodley
,
M.
, and
Bilston
,
L.
,
2017
, “
Characteristics of CSF Velocity-Time Profile in Posttraumatic Syringomyelia
,”
Am. J. Neuroradiol.
,
38
(
9
), pp.
1839
1844
.
8.
Bunck
,
A. C.
,
Kroeger
,
J. R.
,
Juettner
,
A.
,
Brentrup
,
A.
,
Fiedler
,
B.
,
Crelier
,
G. R.
,
Martin
,
B. A.
,
Heindel
,
W.
,
Maintz
,
D.
, and
Schwindt
,
W.
,
2012
, “
Magnetic Resonance 4D Flow Analysis of Cerebrospinal Fluid Dynamics in Chiari I Malformation With and Without Syringomyelia
,”
Eur. Radiol.
,
22
(
9
), pp.
1860
1870
.
9.
Pahlavian
,
S. H.
,
Loth
,
F.
,
Luciano
,
M.
,
Oshinski
,
J.
, and
Martin
,
B. A.
,
2015
, “
Neural Tissue Motion Impacts Cerebrospinal Fluid Dynamics at the Cervical Medullary Junction: A Patient-Specific Moving-Boundary Computational Model
,”
Ann. Biomed. Eng.
,
43
(
12
), pp.
2911
2923
.
10.
Zhang, L. F.
, and
Hargens, A. R.
, 2014, “
Intraocular/Intracranial Pressure Mismatch Hypothesis for Visual Impairment Syndrome in Space
,”
Aviat. Space. Environ. Med.
,
85
(1), pp. 78–80.
11.
Bradley
,
W. G.
, Jr.
,
Scalzo
,
D.
,
Queralt
,
J.
,
Nitz
,
W. N.
,
Atkinson
,
D. J.
, and
Wong
,
P.
,
1996
, “
Normal-Pressure Hydrocephalus: Evaluation With Cerebrospinal Fluid Flow Measurements at MR Imaging
,”
Radiology
,
198
(
2
), pp.
523
529
.
12.
Simpson
,
K.
,
Baranidharan
,
G.
, and
Gupta
,
S.
,
2012
,
Spinal Interventions in Pain Management
, 1st ed., Oxford University Press,
Oxford, UK
.
13.
Papisov
,
M. I.
,
Belov
,
V. V.
, and
Gannon
,
K. S.
,
2013
, “
Physiology of the Intrathecal Bolus: The Leptomeningeal Route for Macromolecule and Particle Delivery to CNS
,”
Mol. Pharm.
,
10
(
5
), pp.
1522
1532
.
14.
Rassoli
,
A.
,
Nabaei
,
M.
,
Fatouraee
,
N.
, and
Nabaei
,
G.
,
2017
, “
Numerical Modeling of the Brain Hypothermia by Cooling the Cerebrospinal Fluid
,”
Tehran Univ. Med. J.
,
75
(
1
), pp.
31
38
.http://www.ingentaconnect.com/content/doaj/16831764/2017/00000075/00000001/art00005
15.
Kumar
,
P.
,
Srivatsava
,
M. V.
,
Singh
,
S.
, and
Prasad
,
H. K.
,
2008
, “
Filtration of Cerebrospinal Fluid Improves Isolation of Mycobacteria
,”
J. Clin. Microbiol.
,
46
(
8
), pp.
2824
2825
.
16.
Urwin
,
S. C.
, and
Hunt
,
P.
,
2000
, “
Cerebrospinal Fluid Filtration in Guillain-Barre Syndrome
,”
Anaesthesia
,
55
(
5
), pp.
489
518
.
17.
Finsterer
,
J.
, and
Mamoli
,
B.
,
1999
, “
Cerebrospinal Fluid Filtration in Amyotrophic Lateral Sclerosis
,”
Eur. J. Neurol.
,
6
(
5
), pp.
597
600
.
18.
Brizzi
,
M.
,
Thoren
,
A.
, and
Hindfelt
,
B.
,
1996
, “
Cerebrospinal Fluid Filtration in a Case of Severe Pneumococcal Meningitis
,”
Scand. J. Infect. Dis.
,
28
(
5
), pp.
455
458
.
19.
Luciano
,
M. G.
,
Dombrowski
,
S. M.
,
Qvarlander
,
S.
,
El-Khoury
,
S.
,
Yang
,
J.
,
Thyagaraj
,
S.
, and
Loth
,
F.
,
2017
, “
Novel Method for Dynamic Control of Intracranial Pressure
,”
J. Neurosurg.
,
126
(
5
), pp.
1629
1640
.
20.
Stockman
,
H. W.
,
2007
, “
Effect of Anatomical Fine Structure on the Dispersion of Solutes in the Spinal Subarachnoid Space
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
666
675
.
21.
Stockman
,
H. W.
,
2006
, “
Effect of Anatomical Fine Structure on the Flow of Cerebrospinal Fluid in the Spinal Subarachnoid Space
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
106
114
.
22.
Tangen
,
K. M.
,
Hsu
,
Y.
,
Zhu
,
D. C.
, and
Linninger
,
A. A.
,
2015
, “
CNS Wide Simulation of Flow Resistance and Drug Transport Due to Spinal Microanatomy
,”
J. Biomech.
,
48
(
10
), pp.
2144
2154
.
23.
Tangen
,
K.
,
Narasimhan
,
N. S.
,
Sierzega
,
K.
,
Preden
,
T.
,
Alaraj
,
A.
, and
Linninger
,
A. A.
,
2016
, “
Clearance of Subarachnoid Hemorrhage From the Cerebrospinal Fluid in Computational and In Vivo Models
,”
Ann Biomed Eng.
,
44
(12), pp. 3478–3494.
24.
Tangen
,
K.
,
Linninger
,
A.
, and
Narasimhan
,
N. S.
,
2016
, “
Clearance of Subarachnoid Hemorrhage from the Cerebrospinal Fluid in Computational and In Vitro Models
,”
Cerebrovasc. Dis.
,
44
, p. 202.
25.
Khani
,
M.
,
Xing
,
T.
,
Gibbs
,
C.
,
Oshinski
,
J. N.
,
Stewart
,
G. R.
,
Zeller
,
J. R.
, and
Martin
,
B. A.
,
2017
, “
Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey
,”
ASME J. Biomech. Eng.
,
139
(
8
), p. 081005.
26.
Hsu
,
Y.
,
Harris
,
T. J.
,
Hettiarachchi
,
H. D. M.
,
Penn
,
R.
, and
Linninger
,
A. A.
,
2011
, “
Three Dimensional Simulation and Experimental Investigation of Intrathecal Drug Delivery in the Spinal Canal and the Brain
,”
21st European Symposium on Computer Aided Process Engineering
(
ESCAPE
), Chalkidiki, Greece, May 29–June 1, pp.
1525
1529
.
27.
Hsu
,
Y.
,
Hettiarachchi
,
H. D.
,
Zhu
,
D. C.
, and
Linninger
,
A. A.
,
2012
, “
The Frequency and Magnitude of Cerebrospinal Fluid Pulsations Influence Intrathecal Drug Distribution: Key Factors for Interpatient Variability
,”
Anesth. Analg.
,
115
(
2
), pp.
386
394
.
28.
Cheng
,
S.
,
Fletcher
,
D.
,
Hemley
,
S.
,
Stoodley
,
M.
, and
Bilston
,
L.
,
2014
, “
Effects of Fluid Structure Interaction in a Three Dimensional Model of the Spinal Subarachnoid Space
,”
J. Biomech.
,
47
(
11
), pp.
2826
2830
.
29.
Tangen
,
K. M.
,
Leval
,
R.
,
Mehta
,
A. I.
, and
Linninger
,
A. A.
,
2017
, “
Computational and In Vitro Experimental Investigation of Intrathecal Drug Distribution: Parametric Study of the Effect of Injection Volume, Cerebrospinal Fluid Pulsatility, and Drug Uptake
,”
Anesth. Analg.
,
124
(
5
), pp.
1686
1696
.
30.
Kuttler
,
A.
,
Dimke
,
T.
,
Kern
,
S.
,
Helmlinger
,
G.
,
Stanski
,
D.
, and
Finelli
,
L. A.
,
2010
, “
Understanding Pharmacokinetics Using Realistic Computational Models of Fluid Dynamics: Biosimulation of Drug Distribution Within the CSF Space for Intrathecal Drugs
,”
J. Pharmacokinet. Pharmacodyn.
,
37
(
6
), pp.
629
644
.
31.
Pizzichelli
,
G.
,
Kehlet
,
G.
,
Evju
,
Ø.
,
Martin
,
B. A.
,
Rognes
,
M. E.
,
Mardal
,
K. A.
, and
Sinibaldi
,
E.
,
2017
, “
Numerical Study of Intrathecal Drug Delivery to a Permeable Spinal Cord: Effect of Catheter Position and Angle
,”
Comput. Methods Biomech. Biomed. Eng., Press.
,
20
(15), pp. 1599–1608.
32.
Haga
,
P. T.
,
Pizzichelli
,
G.
,
Mortensen
,
M.
,
Kuchta
,
M.
,
Pahlavian
,
S. H.
,
Sinibaldi
,
E.
,
Martin
,
B. A.
, and
Mardal
,
K. A.
,
2017
, “
A Numerical Investigation of Intrathecal Isobaric Drug Dispersion Within the Cervical Subarachnoid Space
,”
PLoS One
,
12
(
3
), p.
e0173680
.
33.
Heidari Pahlavian
,
S.
,
Bunck
,
A. C.
,
Loth
,
F.
,
Shane Tubbs
,
R.
,
Yiallourou
,
T.
,
Kroeger
,
J. R.
,
Heindel
,
W.
, and
Martin
,
B. A.
,
2015
, “
Characterization of the Discrepancies Between Four-Dimensional Phase-Contrast Magnetic Resonance Imaging and In-Silico Simulations of Cerebrospinal Fluid Dynamics
,”
ASME J. Biomech. Eng.
,
137
(
5
), p.
051002
.
34.
Heidari Pahlavian
,
S.
,
Bunck
,
A. C.
,
Thyagaraj
,
S.
,
Giese
,
D.
,
Loth
,
F.
,
Hedderich
,
D. M.
,
Kroger
,
J. R.
, and
Martin
,
B. A.
,
2016
, “
Accuracy of 4D Flow Measurement of Cerebrospinal Fluid Dynamics in the Cervical Spine: An In Vivo Verification against Numerical Simulation
,”
Ann. Biomed. Eng.
,
44
(
11
), pp.
3202
3214
.
35.
Heidari Pahlavian
,
S.
,
Yiallourou
,
T.
,
Tubbs
,
R. S.
,
Bunck
,
A. C.
,
Loth
,
F.
,
Goodin
,
M.
,
Raisee
,
M.
, and
Martin
,
B. A.
,
2014
, “
The Impact of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine
,”
PLoS One
,
9
(
4
), p.
e91888
.
36.
Bertram
,
C. D.
,
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
,
2005
, “
The Origins of Syringomyelia: Numerical Models of Fluid/Structure Interactions in the Spinal Cord
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1099
1109
.
37.
Bertram
,
C.
,
Bilston
,
L.
, and
Stoodley
,
M.
,
2008
, “
Tensile Radial Stress in the Spinal Cord Related to Arachnoiditis or Tethering: A Numerical Model
,”
Med. Biol. Eng. Comput.
,
46
(
7
), pp.
701
707
.
38.
Elliott
,
N. S. J.
,
Lucey
,
A. D.
,
Lockerby
,
D. A.
, and
Brodbelt
,
A. R.
,
2017
, “
Fluid-Structure Interactions in a Cylindrical Layered Wave Guide With Application in the Spinal Column to Syringomyelia
,”
J. Fluids Struct.
,
70
, pp.
464
499
.
39.
Elliott
,
N. S.
,
2012
, “
Syrinx Fluid Transport: Modeling Pressure-Wave-Induced Flux Across the Spinal Pial Membrane
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031006
.
40.
Jain
,
K.
,
Ringstad
,
G.
,
Eide
,
P. K.
, and
Mardal
,
K. A.
,
2017
, “
Direct Numerical Simulation of Transitional Hydrodynamics of the Cerebrospinal Fluid in Chiari I Malformation: The Role of Cranio-Vertebral Junction
,”
Int. J. Numer. Method Biomed. Eng.
,
33
(
9
), p. e02853.
41.
Cheng
,
S.
,
Stoodley
,
M. A.
,
Wong
,
J.
,
Hemley
,
S.
,
Fletcher
,
D. F.
, and
Bilston
,
L. E.
,
2012
, “
The Presence of Arachnoiditis Affects the Characteristics of CSF Flow in the Spinal Subarachnoid Space: A Modelling Study
,”
J. Biomech.
,
45
(
7
), pp.
1186
1191
.
42.
Rutkowska
,
G.
,
Haughton
,
V.
,
Linge
,
S.
, and
Mardal
,
K. A.
,
2012
, “
Patient-Specific 3D Simulation of Cyclic CSF Flow at the Craniocervical Region
,”
AJNR Am. J. Neuroradiol.
,
33
(
9
), pp.
1756
1762
.
43.
Yiallourou
,
T. I.
,
Kröger
,
J. R.
,
Stergiopulos
,
N.
,
Maintz
,
D.
,
Martin
,
B. A.
, and
Bunck
,
A. C.
,
2012
, “
Comparison of 4D Phase-Contrast MRI Flow Measurements to Computational Fluid Dynamics Simulations of Cerebrospinal Fluid Motion in the Cervical Spine
,”
PLoS ONE
,
7
(
12
), p.
e52284
.
44.
Clarke
,
E. C.
,
Stoodley
,
M. A.
, and
Bilston
,
L. E.
,
2013
, “
Changes in Temporal Flow Characteristics of CSF in Chiari Malformation Type I With and Without Syringomyelia: Implications for Theory of Syrinx Development Clinical Article
,”
J. Neurosurg.
,
118
(
5
), pp.
1135
1140
.
45.
Shaffer
,
N.
,
Martin
,
B. A.
,
Rocque
,
B.
,
Madura
,
C.
,
Wieben
,
O.
,
Iskandar
,
B.
,
Dombrowski
,
S.
,
Luciano
,
M.
,
Oshinski
,
J.
, and
Loth
,
F.
,
2013
, “
Cerebrospinal Fluid Flow Impedance Is Elevated in Type I Chiari Malformation
,”
ASME J. Biomech. Eng.
,
136
(2), p. 021012.
46.
Martin
,
B. A.
,
Kalata
,
W.
,
Shaffer
,
N.
,
Fischer
,
P.
,
Luciano
,
M.
, and
Loth
,
F.
,
2013
, “
Hydrodynamic and Longitudinal Impedance Analysis of Cerebrospinal Fluid Dynamics at the Craniovertebral Junction in Type I Chiari Malformation
,”
PLoS One
,
8
(
10
), p.
e75335
.
47.
Roldan
,
A.
,
Wieben
,
O.
,
Haughton
,
V.
,
Osswald
,
T.
, and
Chesler
,
N.
,
2009
, “
Characterization of CSF Hydrodynamics in the Presence and Absence of Tonsillar Ectopia by Means of Computational Flow Analysis
,”
AJNR Am. J. Neuroradiol.
,
30
(
5
), pp.
941
946
.
48.
Linge
,
S. O.
,
Mardal
,
K.-A.
,
Helgeland
,
A.
,
Heiss
,
J. D.
, and
Haughton
,
V.
,
2014
, “
Effect of Craniovertebral Decompression on CSF Dynamics in Chiari Malformation Type I Studied With Computational Fluid Dynamics: Laboratory Investigation
,”
J. Neurosurg. Spine
,
21
(
4
), p.
559
.
49.
Linge
,
S. O.
,
Haughton
,
V.
,
Lovgren
,
A. E.
,
Mardal
,
K. A.
,
Helgeland
,
A.
, and
Langtangen
,
H. P.
,
2011
, “
Effect of Tonsillar Herniation on Cyclic CSF Flow Studied With Computational Flow Analysis
,”
AJNR Am. J. Neuroradiol.
,
32
(
8
), pp.
1474
1481
.
50.
Linge
,
S.
,
Mardal
,
K.-A.
,
Haughton
,
V.
, and
Helgeland
,
A.
,
2013
, “
Simulating CSF Flow Dynamics in the Normal and the Chiari I Subarachnoid Space During Rest and Exertion
,”
Am. J. Neuroradiol.
,
34
(
1
), pp.
41
45
.
51.
Bilston
,
L. E.
,
Fletcher
,
D. F.
, and
Stoodley
,
M. A.
,
2006
, “
Focal Spinal Arachnoiditis Increases Subarachnoid Space Pressure: A Computational Study
,”
Clin. Biomech. (Bristol, Avon)
,
21
(
6
), pp.
579
584
.
52.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
,
2001
, “
Hydrodynamic Modeling of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
71
79
.
53.
Gupta
,
S.
,
Soellinger
,
M.
,
Grzybowski
,
D. M.
,
Boesiger
,
P.
,
Biddiscombe
,
J.
,
Poulikakos
,
D.
, and
Kurtcuoglu
,
V.
,
2010
, “
Cerebrospinal Fluid Dynamics in the Human Cranial Subarachnoid Space: An Overlooked Mediator of Cerebral Disease—I: Computational Model
,”
J. R. Soc. Interface
,
7
(
49
), pp.
1195
1204
.
54.
Sass
,
L. R.
,
Khani
,
M.
,
Natividad
,
G. C.
,
Tubbs
,
R. S.
,
Baledent
,
O.
, and
Martin
,
B. A.
,
2017
, “
A 3D Subject-Specific Model of the Spinal Subarachnoid Space With Anatomically Realistic Ventral and Dorsal Spinal Cord Nerve Rootlets
,”
Fluids Barriers CNS
,
14
(
1
), p.
36
.
55.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
Neuroimage
,
31
(
3
), pp.
1116
1128
.
56.
Gupta
,
A.
,
Church
,
D.
,
Barnes
,
D.
, and
Hassan
,
A.
,
2009
, “
Cut to the Chase: On the Need for Genotype-Specific Soft Tissue Sarcoma Trials
,”
Ann. Oncol.
,
20
(
3
), pp.
399
400
.
57.
Honji
,
H.
,
1981
, “
Streaked Flow Around an Oscillating Circular-Cylinder
,”
J Fluid Mech.
,
107
(
1
), pp.
509
520
.
58.
Hall
,
P.
,
1984
, “
On the Stability of the Unsteady Boundary-Layer on a Cylinder Oscillating Transversely in a Viscous-Fluid
,”
J. Fluid Mech.
,
146
(
1
), pp.
347
367
.
59.
Hino
,
M.
,
Sawamoto
,
M.
, and
Takasu
,
S.
,
1976
, “
Experiments on Transition to Turbulence in an Oscillatory Pipe-Flow
,”
J. Fluid Mech.
,
75
(
2
), pp.
193
207
.
60.
Sanchez
,
A. L.
,
Martinez-Bazan
,
C.
,
Gutierrez-Montes
,
C.
,
Criado-Hidalgo
,
E.
,
Pawlak
,
G.
,
Bradley
,
W.
,
Haughton
,
V.
, and
Lasheras
,
J. C.
,
2018
, “
On the Bulk Motion of the Cerebrospinal Fluid in the Spinal Canal
,”
J. Fluid Mech.
,
841
, pp.
203
227
.
61.
Clarke
,
E. C.
,
Fletcher
,
D. F.
,
Stoodley
,
M. A.
, and
Bilston
,
L. E.
,
2013
, “
Computational Fluid Dynamics Modelling of Cerebrospinal Fluid Pressure in Chiari Malformation and Syringomyelia
,”
J. Biomech.
,
46
(
11
), pp.
1801
1809
.
62.
Linninger
,
A. A.
,
Tsakiris
,
C.
,
Zhu
,
D. C.
,
Xenos
,
M.
,
Roycewicz
,
P.
,
Danziger
,
Z.
, and
Penn
,
R.
,
2005
, “
Pulsatile Cerebrospinal Fluid Dynamics in the Human Brain
,”
IEEE Trans. Biomed. Eng.
,
52
(
4
), pp.
557
565
.
63.
Greitz
,
D.
,
1993
, “
Cerebrospinal Fluid Circulation and Associated Intracranial Dynamics: A Radiologic Investigation Using MR Imaging and Radionuclide Cisternography
,”"
Acta Radiol. Suppl.
,
386
, pp.
1
23
.http://europepmc.org/abstract/med/8517189
64.
Greitz
,
D.
,
Franck
,
A.
, and
Nordell
,
B.
,
1993
, “
On the Pulsatile Nature of Intracranial and Spinal CSF-Circulation Demonstrated by MR Imaging
,”
Acta Radiol.
,
34
(
4
), pp.
321
328
.
65.
Bunck
,
A. C.
,
Kroger
,
J. R.
,
Juttner
,
A.
,
Brentrup
,
A.
,
Fiedler
,
B.
,
Schaarschmidt
,
F.
,
Crelier
,
G. R.
,
Schwindt
,
W.
,
Heindel
,
W.
,
Niederstadt
,
T.
, and
Maintz
,
D.
,
2011
, “
Magnetic Resonance 4D Flow Characteristics of Cerebrospinal Fluid at the Craniocervical Junction and the Cervical Spinal Canal
,”
Eur. Radiol.
,
21
(
8
), pp.
1788
1796
.
66.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
,
1984
, “
Pulsatile Poststenotic Flow Studies With Laser Doppler Anemometry
,”
J. Biomech.
,
17
(
9
) , pp.
695
705
.
67.
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2014
, “
Mind the Gap: Impact of Computational Fluid Dynamics Solution Strategy on Prediction of Intracranial Aneurysm Hemodynamics and Rupture Status Indicators
,”
AJNR Am. J. Neuroradiol.
,
35
(
3
), pp.
536
543
.
68.
Valen-Sendstad
,
K.
,
Mardal
,
K. A.
,
Mortensen
,
M.
,
Reif
,
B. A. P.
, and
Langtangen
,
H. P.
,
2011
, “
Direct Numerical Simulation of Transitional Flow in a Patient-Specific Intracranial Aneurysm
,”
J. Biomech.
,
44
(
16
), pp.
2826
2832
.
69.
Tagliabue
,
A.
,
Dede
,
L.
, and
Quarteroni
,
A.
,
2017
, “
Complex Blood Flow Patterns in an Idealized Left Ventricle: A Numerical Study
,”
Chaos
,
27
(
9
), p.
093939
.
70.
Jain
,
K.
, and
Universität Siegen
,
2016
, “
Transition to Turbulence in Physiological Flows: Direct Numerical Simulation of Hemodynamics in Intracranial Aneurysms and Cerebrospinal Fluid Hydrodynamics in the Spinal Canal
,” universi—Universitätsverlag Siegen, Siegen, Germany.
71.
An
,
H. W.
,
Cheng
,
L. A.
, and
Zhao
,
M.
,
2011
, “
Direct Numerical Simulation of Oscillatory Flow Around a Circular Cylinder at Low Keulegan-Carpenter Number
,”
J. Fluid Mech.
,
666
, pp.
77
103
.
72.
Kin
,
E.
, and
Sakajo
,
T.
,
2005
, “
Efficient Topological Chaos Embedded in the Blinking Vortex System
,”
Chaos
,
15
(
2
), p.
23111
.
73.
Aref
,
H.
,
2002
, “
The Development of Chaotic Advection
,”
Phys. Fluids
,
14
(
4
), pp.
1315
1325
.
74.
Daitche
,
A.
, and
Tel
,
T.
,
2009
, “
Dynamics of Blinking Vortices
,”
Phys. Rev. E
,
79
(
1
), p. 016210.
75.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.
76.
Xing
,
T.
, and
Stern
,
F.
,
2011
, “
Closure to Discussion of 'Factors of Safety for Richardson Extrapolation' (2011, ASME J. Fluids Eng., 133, p. 115501)
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
115502
.
77.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2014
, “
Richardson Extrapolation-Based Discretization Uncertainty Estimation for Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
136
(
12
), p. 121401.
78.
Kurtcuoglu
,
V.
,
Soellinger
,
M.
,
Summers
,
P.
,
Poulikakos
,
D.
, and
Boesiger
,
P.
,
2007
, “
Mixing and Modes of Mass Transfer in the Third Cerebral Ventricle: A Computational Analysis
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
695
702
.
79.
Kurtcuoglu
,
V.
,
Soellinger
,
M.
,
Summers
,
P.
,
Boomsma
,
K.
,
Poulikakos
,
D.
,
Boesiger
,
P.
, and
Ventikos
,
Y.
,
2007
, “
Computational Investigation of Subject-Specific Cerebrospinal Fluid Flow in the Third Ventricle and Aqueduct of Sylvius
,”
J. Biomech.
,
40
(
6
), pp.
1235
1245
.
80.
Wilson
,
R. V.
,
Stern
,
F.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations—Part 2: Application for RANS Simulation of a Cargo/Container Ship
,”
ASME J. Fluids Eng.
,
123
(
4
), pp. 803–810.
You do not currently have access to this content.