Recent applications of computational fluid dynamics (CFD) applied to the cardiovascular system have demonstrated its power in investigating the impact of hemodynamics on disease initiation, progression, and treatment outcomes. Flow metrics such as pressure distributions, wall shear stresses (WSS), and blood velocity profiles can be quantified to provide insight into observed pathologies, assist with surgical planning, or even predict disease progression. While numerous studies have performed simulations on clinical human patient data, it often lacks prediagnosis information and can be subject to large intersubject variability, limiting the generalizability of findings. Thus, animal models are often used to identify and manipulate specific factors contributing to vascular disease because they provide a more controlled environment. In this review, we explore the use of CFD in animal models in recent studies to investigate the initiating mechanisms, progression, and intervention effects of various vascular diseases. The first section provides a brief overview of the CFD theory and tools that are commonly used to study blood flow. The following sections are separated by anatomical region, with the abdominal, thoracic, and cerebral areas specifically highlighted. We discuss the associated benefits and obstacles to performing CFD modeling in each location. Finally, we highlight animal CFD studies focusing on common surgical treatments, including arteriovenous fistulas (AVF) and pulmonary artery grafts. The studies included in this review demonstrate the value of combining CFD with animal imaging and should encourage further research to optimize and expand upon these techniques for the study of vascular disease.

References

References
1.
Cohen
,
L. D.
, and
Cohen
,
I.
,
1992
, “
Finite-Element Methods for Active Contour Models and Balloons From 2-D to 3-D
,”
Conference on Computer Vision and Pattern Recognition, Champaign,
IL, June 15–18, pp.
592
598
.
2.
Daugherty
,
A.
,
Manning
,
M. W.
, and
Cassis
,
L. A.
,
2000
, “
Angiotensin II Promotes Atherosclerotic Lesions and Aneurysms in Apolipoprotein E-Deficient Mice
,”
J. Clin. Invest.
,
105
(
11
), pp.
1605
1612
.
3.
Meng
,
H.
,
Metaxa
,
E.
,
Gao
,
L.
,
Liaw
,
N.
,
Natarajan
,
S. K.
,
Swartz
,
D. D.
,
Siddiqui
,
A. H.
,
Kolega
,
J.
, and
Mocco
,
J.
,
2010
, “
Progressive Aneurysm Development Following Hemodynamic Insult
,”
J. Neurosurg.
,
114
(
4
), pp.
1095
1103
.
4.
Traystman
,
R. J.
,
2003
, “
Animal Models of Focal and Global Cerebral Ischemia
,”
ILAR J.
,
44
(
2
), pp.
85
95
.
5.
Jung
,
J.
, and
Hassanein
,
A.
,
2008
, “
Three-Phase CFD Analytical Modeling of Blood Flow
,”
Med. Eng. Phys.
,
30
(
1
), pp.
91
103
.
6.
Taylor
,
C. A.
,
Hughes
,
T. J.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
1–2
), pp.
155
196
.
7.
Dubini
,
G.
,
deLeval
,
M. R.
,
Pietrabissa
,
R.
,
Montevecchi
,
F. M.
, and
Fumero
,
R.
,
1996
, “
A Numerical Fluid Mechanical Study of Repaired Congenital Heart Defects. Application to the Total Cavopulmonary Connection
,”
J. Biomech.
,
29
(
1
), pp.
111
121
.
8.
deLeval
,
M. R.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Jalali
,
H.
,
Camporini
,
G.
,
Redington
,
A.
, and
Pietrabissa
,
R.
,
1996
, “
Use of Computational Fluid Dynamics in the Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
111
(
3
), pp.
502
510
.
9.
Arthurs
,
C. J.
,
Lau
,
K. D.
,
Asrress
,
K. N.
,
Redwood
,
S. R.
, and
Figueroa
,
C. A.
,
2016
, “
A Mathematical Model of Coronary Blood Flow Control: Simulation of Patient-Specific Three-Dimensional Hemodynamics During Exercise
,”
Am. J. Physiol.
,
310
(
9
), pp.
H1242
H1258
.
10.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
SimVascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.
11.
Lee
,
B. K.
,
2011
, “
Computational Fluid Dynamics in Cardiovascular Disease
,”
Korean Circ. J.
,
41
(
8
), pp.
423
430
.
12.
Ford
,
M. D.
,
Black
,
A. T.
,
Cao
,
R. Y.
,
Funk
,
C. D.
, and
Piomelli
,
U.
,
2011
, “
Hemodynamics of the Mouse Abdominal Aortic Aneurysm
,”
Trans. ASME J. Biomech. Eng.
,
133
(
12
), p.
121008
.
13.
Van Doormaal
,
M.
,
Zhou
,
Y. Q.
,
Zhang
,
X. L.
,
Steinman
,
D. A.
, and
Henkelman
,
R. M.
,
2014
, “
Inputs for Subject-Specific Computational Fluid Dynamics Simulation of Blood Flow in the Mouse Aorta
,”
Trans. ASME J. Biomech. Eng.
,
136
(
10
), p.
101008
.
14.
Ruengsakulrach
,
P.
,
Joshi
,
A. K.
,
Fremes
,
S.
,
Butany
,
J.
,
Foster
,
S.
,
Wiwatanapataphee
,
B.
, and
Lenbury
,
Y.
,
2007
, “
Wall Shear Stress and Atherosclerosis: Numerical Blood Flow Simulations in the Mouse Aortic Arch
,”
Appl. Math. Sci. Eng.
,
2
(3), pp. 90–100.https://www.researchgate.net/publication/234832812_Wall_shear_stress_and_atherosclerosis_numerical_blood_flow_simulations_in_the_mouse_aortic_arch
15.
Wittek
,
A.
,
Grosland
,
N. M.
,
Joldes
,
G. R.
,
Magnotta
,
V.
, and
Miller
,
K.
,
2016
, “
From Finite Element Meshes to Clouds of Points: A Review of Methods for Generation of Computational Biomechanics Models for Patient-Specific Applications
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
3
15
.
16.
Bols
,
J.
,
Taelman
,
L.
,
De Santis
,
G.
,
Degroote
,
J.
,
Verhegghe
,
B.
,
Segers
,
P.
, and
Vierendeels
,
J.
,
2016
, “
Unstructured Hexahedral Mesh Generation of Complex Vascular Trees Using a Multi-Block Grid-Based Approach
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
6
), pp.
663
672
.
17.
Trachet
,
B.
,
Renard
,
M.
,
De Santis
,
G.
,
Staelens
,
S.
,
De Backer
,
J.
,
Antiga
,
L.
,
Loeys
,
B.
, and
Segers
,
P.
,
2011
, “
An Integrated Framework to Quantitatively Link Mouse-Specific Hemodynamics to Aneurysm Formation in Angiotensin II-Infused ApoE −/− Mice
,”
Ann. Biomed. Eng.
,
39
(
9
), p.
2430
.
18.
Rayz
,
V. L.
,
Abla
,
A.
,
Boussel
,
L.
,
Leach
,
J. R.
,
Acevedo-Bolton
,
G.
,
Saloner
,
D.
, and
Lawton
,
M. T.
,
2015
, “
Computational Modeling of Flow-Altering Surgeries in Basilar Aneurysms
,”
Ann. Biomed. Eng.
,
43
(
5
), pp.
1210
1222
.
19.
Al-Rawi
,
M.
, and
Al-Jumaily
,
A. M.
,
2016
, “
Assessing Abdominal Aorta Narrowing Using Computational Fluid Dynamics
,”
Med. Biol. Eng. Comput.
,
54
(
5
), pp.
843
853
.
20.
Moon
,
J. Y.
,
Suh
,
D. C.
,
Lee
,
Y. S.
,
Kim
,
Y. W.
, and
Lee
,
J. S.
,
2014
, “
Considerations of Blood Properties, Outlet Boundary Conditions and Energy Loss Approaches in Computational Fluid Dynamics Modeling
,”
Neurointervention
,
9
(
1
), pp.
1
8
.
21.
Arzani
,
A.
,
Gambaruto
,
A. M.
,
Chen
,
G.
, and
Shadden
,
S. C.
,
2017
, “
Wall Shear Stress Exposure Time: A Lagrangian Measure of Near-Wall Stagnation and Concentration in Cardiovascular Flows
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
787
803
.
22.
Feintuch
,
A.
,
Ruengsakulrach
,
P.
,
Lin
,
A.
,
Zhang
,
J.
,
Zhou
,
Y. Q.
,
Bishop
,
J.
,
Davidson
,
L.
,
Courtman
,
D.
,
Foster
,
F. S.
,
Steinman
,
D. A.
,
Henkelman
,
R. M.
, and
Ethier
,
C. R.
,
2007
, “
Hemodynamics in the Mouse Aortic Arch as Assessed by MRI, Ultrasound, and Numerical Modeling
,”
Am. J. Physiol.
,
292
(
2
), pp.
H884
H892
.
23.
Vandeghinste
,
B.
,
Trachet
,
B.
,
Renard
,
M.
,
Casteleyn
,
C.
,
Staelens
,
S.
,
Loeys
,
B.
,
Segers
,
P.
, and
Vandenberghe
,
S.
,
2011
, “
Replacing Vascular Corrosion Casting by In Vivo Micro-CT Imaging for Building 3D Cardiovascular Models in Mice
,”
Mol. Imaging Biol.
,
13
(
1
), pp.
78
86
.
24.
Li
,
X.
,
Liu
,
X.
,
Zhang
,
P.
,
Feng
,
C.
,
Sun
,
A.
,
Kang
,
H.
,
Deng
,
X.
, and
Fan
,
Y.
,
2017
, “
Numerical Simulation of Haemodynamics and Low-Density Lipoprotein Transport in the Rabbit Aorta and Their Correlation With Atherosclerotic Plaque Thickness
,”
J. R. Soc., Interface
,
14
(
129
), p.
20170140
.
25.
Moore
,
J. A.
,
Rutt
,
B. K.
,
Karlik
,
S. J.
,
Yin
,
K.
, and
Ethier
,
C. R.
,
1999
, “
Computational Blood Flow Modeling Based on In Vivo Measurements
,”
Ann. Biomed. Eng.
,
27
(
5
), pp.
627
640
.
26.
Goergen
,
C. J.
,
Azuma
,
J.
,
Barr
,
K. N.
,
Magdefessel
,
L.
,
Kallop
,
D. Y.
,
Gogineni
,
A.
,
Grewall
,
A.
,
Weimer
,
R. M.
,
Connolly
,
A. J.
, and
Dalman
,
R. L.
,
2011
, “
Influences of Aortic Motion and Curvature on Vessel Expansion in Murine Experimental Aneurysms
,”
Aeterioscler., Thromb., Vasc. Biol.
,
31
(
2
), pp.
270
279
.
27.
Phillips
,
E. H.
,
Yrineo
,
A. A.
,
Schroeder
,
H. D.
,
Wilson
,
K. E.
,
Cheng
,
J.-X.
, and
Goergen
,
C. J.
,
2015
, “
Morphological and Biomechanical Differences in the Elastase and AngII ApoE−/− Rodent Models of Abdominal Aortic Aneurysms
,”
Biomed. Res. Int.
,
2015
, p. 413189.
28.
Phillips
,
E. H.
,
Di Achille
,
P.
,
Bersi
,
M. R.
,
Humphrey
,
J. D.
, and
Goergen
,
C. J.
,
2017
, “
Multi-Modality Imaging Enables Detailed Hemodynamic Simulations in Dissecting Aneurysms in Mice
,”
IEEE Trans. Med. Imaging
,
36
(
6
), pp.
1297
1305
.
29.
Park
,
S.-T.
,
Yoon
,
K.
,
Ko
,
Y. B.
, and
Suh
,
D. C.
,
2013
, “
Computational Fluid Dynamics of Intracranial and Extracranal Arteries Using 3-Dimensional Angiography: Technical Considerations With Physician's Point of View
,”
Neurointervention
,
8
(
2
), pp.
92
100
.
30.
Wong
,
G. K. C.
, and
Poon
,
W. S.
,
2011
, “
Current Status of Computational Fluid Dynamics for Cerebral Aneurysms: The Clinician's Perspective
,”
J. Clin. Neurosci.
,
18
(
10
), pp.
1285
1288
.
31.
Zeng
,
Z. J.
,
Durka
,
M. J.
,
Kallmes
,
D. F.
,
Ding
,
Y. H.
, and
Robertson
,
A. M.
,
2011
, “
Can Aspect Ratio Be Used to Categorize Intra-Aneurysmal Hemodynamics?—A Study of Elastase Induced Aneurysms in Rabbit
,”
J. Biomech.
,
44
(
16
), pp.
2809
2816
.
32.
Zeng
,
Z. J.
,
Kallmes
,
D. F.
,
Durka
,
M. J.
,
Ding
,
Y. H.
,
Lewis
,
D.
,
Kadirvel
,
R.
, and
Robertson
,
A. M.
,
2010
, “
Sensitivity of CFD Based Hemodynamic Results in Rabbit Aneurysm Models to Idealizations in Surrounding Vasculature
,”
Trans. ASME J. Biomech. Eng.
,
132
(
9
), p.
091009
.
33.
Nam
,
D.
,
Ni
,
C. W.
,
Rezvan
,
A.
,
Suo
,
J.
,
Budzyn
,
K.
,
Llanos
,
A.
,
Harrison
,
D.
,
Giddens
,
D.
, and
Jo
,
H.
,
2009
, “
Partial Carotid Ligation is a Model of Acutely Induced Disturbed Flow, Leading to Rapid Endothelial Dysfunction and Atherosclerosis
,”
Am. J. Physiol.
,
297
(
4
), pp.
H1535
H1543
.
34.
Greve
,
J. M.
,
Les
,
A. S.
,
Tang
,
B. T.
,
Draney Blomme
,
M. T.
,
Wilson
,
N. M.
,
Dalman
,
R. L.
,
Pelc
,
N. J.
, and
Taylor
,
C. A.
,
2006
, “
Allometric Scaling of Wall Shear Stress From Mice to Humans: Quantification Using Cine Phase-Contrast MRI and Computational Fluid Dynamics
,”
Am. J. Physiol.
,
291
(
4
), pp.
H1700
H1708
.
35.
Trachet
,
B.
,
Bols
,
J.
,
Degroote
,
J.
,
Verhegghe
,
B.
,
Stergiopulos
,
N.
,
Vierendeels
,
J.
, and
Segers
,
P.
,
2015
, “
An Animal-Specific FSI Model of the Abdominal Aorta in Anesthetized Mice
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1298
1309
.
36.
Suo
,
J.
,
Ferrara
,
D. E.
,
Sorescu
,
D.
,
Guldberg
,
R. E.
,
Taylor
,
W. R.
, and
Giddens
,
D. P.
,
2007
, “
Hemodynamic Shear Stresses in Mouse Aortas—Implications for Atherogenesis
,”
Arterioscler. Thromb. Vasc. Biol.
,
27
(
2
), pp.
346
351
.
37.
Trachet
,
B.
,
Swillens
,
A.
,
Van Loo
,
D.
,
Casteleyn
,
C.
,
De Paepe
,
A.
,
Loeys
,
B.
, and
Segers
,
P.
,
2009
, “
The Influence of Aortic Dimensions on Calculated Wall Shear Stress in the Mouse Aortic Arch
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
5
), pp.
491
499
.
38.
Mynard
,
J. P.
,
Wasserman
,
B. A.
, and
Steinman
,
D. A.
,
2013
, “
Errors in the Estimation of Wall Shear Stress by Maximum Doppler Velocity
,”
Atherosclerosis
,
227
(
2
), pp.
259
266
.
39.
Swillens
,
A.
,
Shcherbakova
,
D.
,
Trachet
,
B.
, and
Segers
,
P.
,
2016
, “
Pitfalls of Doppler Measurements for Arterial Blood Flow Quantification in Small Animal Research: A Study Based on Virtual Ultrasound Imaging
,”
Ultrasound Med. Biol.
,
42
(
6
), pp.
1399
1411
.
40.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work—Part I: The Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. U S A
,
12
(
3
), pp.
207
214
.
41.
Trachet
,
B.
,
Bols
,
J.
,
De Santis
,
G.
,
Vandenberghe
,
S.
,
Loeys
,
B.
, and
Segers
,
P.
,
2011
, “
The Impact of Simplified Boundary Conditions and Aortic Arch Inclusion on CFD Simulations in the Mouse Aorta: A Comparison With Mouse-Specific Reference Data
,”
Trans. ASME J. Biomech. Eng.
,
133
(
12
), p.
121006
.
42.
Assemat
,
P.
,
Siu
,
K. K.
,
Armitage
,
J. A.
,
Hokke
,
S. N.
,
Dart
,
A.
,
Chin-Dusting
,
J.
, and
Hourigan
,
K.
,
2014
, “
Haemodynamical Stress in Mouse Aortic Arch With Atherosclerotic Plaques: Preliminary Study of Plaque Progression
,”
Comput. Struct. Biotechnol. J.
,
10
(
17
), pp.
98
106
.
43.
Ferraro
,
M.
,
Trachet
,
B.
,
Aslanidou
,
L.
,
Fehervary
,
H.
,
Segers
,
P.
, and
Stergiopulos
,
N.
,
2018
, “
Should We Ignore What We Cannot Measure? How Non-Uniform Stretch, Non-Uniform Wall Thickness and Minor Side Branches Affect Computational Aortic Biomechanics in Mice
,”
Ann. Biomed. Eng.
,
46
(
1
), pp.
159
170
.
44.
Hirsch
,
A. T.
,
Haskal
,
Z. J.
,
Hertzer
,
N. R.
,
Bakal
,
C. W.
,
Creager
,
M. A.
,
Halperin
,
J. L.
,
Hiratzka
,
L. F.
,
Murphy
,
W. R.
,
Olin
,
J. W.
, and
Puschett
,
J. B.
,
2006
, “
ACC/AHA 2005 Guidelines for the Management of Patients With Peripheral Arterial Disease (Lower Extremity, Renal, Mesenteric, and Abdominal Aortic): A Collaborative Report From the American Association for Vascular Surgery/Society for Vascular Surgery, * Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease)
,”
J. Am. Coll. Cardiol.
,
47
(
6
), pp.
e1
e192
.
45.
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2012
, “
Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms
,”
J. Biomech.
,
45
(
5
), pp.
805
814
.
46.
Amirbekian
,
S.
,
Long
,
R. C.
,
Consolini
,
M. A.
,
Suo
,
J.
,
Willett
,
N. J.
,
Fielden
,
S. W.
,
Giddens
,
D. P.
,
Taylor
,
W. R.
, and
Oshinski
,
J. N.
,
2009
, “
In Vivo Assessment of Blood Flow Patterns in Abdominal Aorta of Mice With MRI: Implications for AAA Localization
,”
Am. J. Physiol.
,
297
(
4
), pp.
H1290
H1295
.
47.
Poulsen
,
J. L.
,
Stubbe
,
J.
, and
Lindholt
,
J.
,
2016
, “
Animal Models Used to Explore Abdominal Aortic Aneurysms: A Systematic Review
,”
Eur. J. Vasc. Endovascular Surg.
,
52
(
4
), pp.
487
499
.
48.
Gertz, S. D.
,
Mintz, Y.
,
Beeri, R.
,
Rubinstein, C.
,
Gilon, D.
,
Berlatzky, Y.
,
Appelbaum, L.
, and
Gavish, L.
, 2013, “
Lessons From Animal Models of Arterial Aneurysm
,”
AORTA (Stamford)
,
1
(5), pp. 244–254.
49.
Goergen
,
C. J.
,
Johnson
,
B. L.
,
Greve
,
J. M.
,
Taylor
,
C. A.
, and
Zarins
,
C. K.
,
2007
, “
Increased Anterior Abdominal Aortic Wall Motion: Possible Role in Aneurysm Pathogenesis and Design of Endovascular Devices
,”
J. Endovascular Ther.
,
14
(
4
), pp.
574
584
.
50.
Zhang
,
J. M.
,
Zhong
,
L.
,
Luo
,
T.
,
Huo
,
Y. L.
,
Tan
,
S. Y.
,
Wong
,
A. S. L.
,
Su
,
B. Y.
,
Wan
,
M.
,
Zhao
,
X. D.
,
Kassab
,
G. S.
,
Lee
,
H. P.
,
Khoo
,
B. C.
,
Kang
,
C. W.
,
Ba
,
T.
, and
Tan
,
R. S.
,
2014
, “
Numerical Simulation and Clinical Implications of Stenosis in Coronary Blood Flow
,”
Biomed. Res. Int.
,
2014
, p. 514729.
51.
Reller
,
M. D.
,
Strickland
,
M. J.
,
Riehle-Colarusso
,
T.
,
Mahle
,
W. T.
, and
Correa
,
A.
,
2008
, “
Prevalence of Congenital Heart Defects in Metropolitan Atlanta, 1998–2005
,”
J. Pediatr.
,
153
(
6
), pp.
807
813
.
52.
Hoffman
,
J. I. E.
, and
Kaplan
,
S.
,
2002
, “
The Incidence of Congenital Heart Disease
,”
J. Am. Coll. Cardiol.
,
39
(
12
), pp.
1890
1900
.
53.
Menon
,
A.
,
Eddinger
,
T. J.
,
Wang
,
H. F.
,
Wendell
,
D. C.
,
Toth
,
J. M.
, and
LaDisa
,
J. F.
,
2012
, “
Altered Hemodynamics, Endothelial Function, and Protein Expression Occur With Aortic Coarctation and Persist After Repair
,”
Am. J. Physiol.
,
303
(
11
), pp.
H1304
H1318
.
54.
Rourke
,
M. F.
, and
Cartmill
,
T. B.
,
1971
, “
Influence of Aortic Coarctation on Pulsatile Hemodynamics in the Proximal Aorta
,”
Circulation
,
44
(
2
), p.
281
.
55.
Menon
,
A.
,
Wendell
,
D. C.
,
Wang
,
H. F.
,
Eddinger
,
T. J.
,
Toth
,
J. M.
,
Dholakia
,
R. J.
,
Larsen
,
P. M.
,
Jensen
,
E. S.
, and
LaDisa
,
J. F.
,
2012
, “
A Coupled Experimental and Computational Approach to Quantify Deleterious Hemodynamics, Vascular Alterations, and Mechanisms of Long-Term Morbidity in Response to Aortic Coarctation
,”
J. Pharmacol. Toxicol. Methods
,
65
(
1
), pp.
18
28
.
56.
Willett
,
N. J.
,
Long
,
R. C.
,
Maiellaro-Rafferty
,
K.
,
Sutliff
,
R. L.
,
Shafer
,
R.
,
Oshinski
,
J. N.
,
Giddens
,
D. P.
,
Guldberg
,
R. E.
, and
Taylor
,
W. R.
,
2010
, “
An In Vivo Murine Model of Low-Magnitude Oscillatory Wall Shear Stress to Address the Molecular Mechanisms of Mechanotransduction-Brief Report
,”
Arterioscler. Thromb. Vasc. Biol.
,
30
(
11
), pp.
2099
2102
.
57.
Connolly
,
J. E.
,
Wilson
,
S. E.
,
Lawrence
,
P. L.
, and
Fujitani
,
R. M.
,
2002
, “
Middle Aortic Syndrome: Distal Thoracic and Abdominal Coarctation, a Disorder With Multiple Etiologies
,”
J. Am. Coll. Surg.
,
194
(
6
), pp.
774
781
.
58.
George
,
P. M.
, and
Albers
,
G. W.
,
2014
, “
Aortic Arch Atheroma a Plaque of a Different Color or More of the Same?
,”
Stroke
,
45
(
5
), pp.
1239
1240
.
59.
Peiffer
,
V.
,
Rowland
,
E. M.
,
Cremers
,
S. G.
,
Weinberg
,
P. D.
, and
Sherwin
,
S. J.
,
2012
, “
Effect of Aortic Taper on Patterns of Blood Flow and Wall Shear Stress in Rabbits: Association With Age
,”
Atherosclerosis
,
223
(
1
), pp.
114
121
.
60.
Zhu
,
H.
,
Zhang
,
J.
,
Shih
,
J.
,
Lopez-Bertoni
,
F.
,
Hagaman
,
J. R.
,
Maeda
,
N.
, and
Friedman
,
M. H.
,
2009
, “
Differences in Aortic Arch Geometry, Hemodynamics, and Plaque Patterns Between C57BL/6 and 129/SvEv Mice
,”
Trans. ASME J. Biomech. Eng.
,
131
(
12
), p.
121005
.
61.
Tomita
,
H.
,
Hagaman
,
J.
,
Friedman
,
M. H.
, and
Maeda
,
N.
,
2012
, “
Relationship Between Hemodynamics and Atherosclerosis in Aortic Arches of Apolipoprotein E-Null Mice on 129S6/SvEvTac and C57BL/6J Genetic Backgrounds
,”
Atherosclerosis
,
220
(
1
), pp.
78
85
.
62.
Vincent
,
P. E.
,
Plata
,
A. M.
,
Hunt
,
A. A. E.
,
Weinberg
,
P. D.
, and
Sherwin
,
S. J.
,
2011
, “
Blood Flow in the Rabbit Aortic Arch and Descending Thoracic Aorta
,”
J. R. Soc. Interface
,
8
(
65
), pp.
1708
1719
.
63.
Kazakidi
,
A.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2009
, “
Effect of Reynolds Number and Flow Division on Patterns of Haemodynamic Wall Shear Stress Near Branch Points in the Descending Thoracic Aorta
,”
J. R. Soc. Interface
,
6
(
35
), pp.
539
548
.
64.
Doost
,
S. N.
,
Ghista
,
D.
,
Su
,
B. Y.
,
Zhong
,
L.
, and
Morsi
,
Y. S.
,
2016
, “
Heart Blood Flow Simulation: A Perspective Review
,”
Biomed. Eng. Online
,
15
(
1
), pp. 101–128.
65.
Morris
,
P. D.
,
Narracott
,
A.
,
von Tengg-Kobligk
,
H.
,
Soto
,
D. A. S.
,
Hsiao
,
S.
,
Lungu
,
A.
,
Evans
,
P.
,
Bressloff
,
N. W.
,
Lawford
,
P. V.
,
Hose
,
D. R.
, and
Gunn
,
J. P.
,
2016
, “
Computational Fluid Dynamics Modelling in Cardiovascular Medicine
,”
Heart
,
102
(
1
), pp.
18
28
.
66.
Hearse
,
D. J.
,
2000
, “
The Elusive Coypu: The Importance of Collateral Flow and the Search for an Alternative to the Dog
,”
Cardiovasc. Res.
,
45
(
1
), pp.
215
219
.
67.
Schaper
,
W.
,
Flameng
,
W.
, and
De Brabander
,
M.
,
1972
, “
Comparative Aspects of Coronary Collateral Circulation
,”
Comparative Pathophysiology of Circulatory Disturbances
(Advances in Experimental Medicine and Biology), C. M. Bloor, ed., Springer, Boston, MA, pp.
267
276
.
68.
Kern
,
M. J.
,
Lerman
,
A.
,
Bech
,
J. W.
,
De Bruyne
,
B.
,
Eeckhout
,
E.
,
Fearon
,
W. F.
,
Higano
,
S. T.
,
Lim
,
M. J.
,
Meuwissen
,
M.
,
Piek
,
J. J.
,
Pijls
,
N. H. J.
,
Siebes
,
M.
, and
Spaan
,
J. A. E.
,
2006
, “
Physiological Assessment of Coronary Artery Disease in the Cardiac Catheterization Laboratory
,”
Circulation
,
114
(
12
), pp.
1321
1341
.
69.
LaDisa
,
J. F.
,
Guler
,
I.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
,
2003
, “
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
,”
Ann. Biomed. Eng.
,
31
(
8
), pp.
972
980
.
70.
Lelovas
,
P. P.
,
Kostomitsopoulos
,
N. G.
, and
Xanthos
,
T. T.
,
2014
, “
A Comparative Anatomic and Physiologic Overview of the Porcine Heart
,”
J. Am. Assoc. Lab. Anim. Sci.
,
53
(
5
), pp.
432
438
.
71.
Su
,
B. Y.
,
Huo
,
Y. L.
,
Kassab
,
G. S.
,
Kabinejadian
,
F.
,
Kim
,
S.
,
Leo
,
H. L.
, and
Zhong
,
L.
,
2014
, “
Numerical Investigation of Blood Flow in Three-Dimensional Porcine Left Anterior Descending Artery With Various Stenoses
,”
Comput. Biol. Med.
,
47
, pp.
130
138
.
72.
Douglas
,
P. S.
,
De Bruyne
,
B.
,
Pontone
,
G.
,
Patel
,
M. R.
,
Norgaard
,
B. L.
,
Byrne
,
R. A.
,
Curzen
,
N.
,
Purcell
,
I.
,
Gutberlet
,
M.
,
Rioufol
,
G.
,
Hink
,
U.
,
Schuchlenz
,
H. W.
,
Feuchtner
,
G.
,
Gilard
,
M.
,
Andreini
,
D.
,
Jensen
,
J. M.
,
Hadamitzky
,
M.
,
Chiswell
,
K.
,
Cyr
,
D.
,
Wilk
,
A.
,
Wang
,
F.
,
Rogers
,
C.
,
Hlatky
,
M. A.
, and
Investigators
,
P.
,
2016
, “
1-Year Outcomes of FFRCT-Guided Care in Patients With Suspected Coronary Disease: The PLATFORM Study
,”
J. Am. Coll. Cardiol.
,
68
(
5
), pp.
435
445
.
73.
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bharadvaj
,
B. K.
,
Sottiurai
,
V. S.
,
Mabon
,
R. F.
, and
Glagov
,
S.
,
1983
, “
Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circulation Res.
,
53
(
4
), p.
502
.
74.
Ivan
,
E.
,
Khatri
,
J. J.
,
Johnson
,
C.
,
Magid
,
R.
,
Godin
,
D.
,
Nandi
,
S.
,
Lessner
,
S.
, and
Galis
,
Z. S.
,
2002
, “
Expansive Arterial Remodeling is Associated With Increased Neointimal Macrophage Foam Cell Content—The Murine Model of Macrophage-Rich Carotid Artery Lesions
,”
Circulation
,
105
(
22
), pp.
2686
2691
.
75.
Ishii
,
A.
,
Vinuela
,
F.
,
Murayama
,
Y.
,
Yuki
,
I.
,
Nien
,
Y. L.
,
Yeh
,
D. T.
, and
Vinters
,
H. V.
,
2006
, “
Swine Model of Carotid Artery Atherosclerosis: Experimental Induction by Surgical Partial Ligation and Dietary Hypercholesterolemia
,”
Am. J. Neuroradiol.
,
27
(
9
), pp.
1893
1899
.http://www.ajnr.org/content/27/9/1893.long
76.
Morimoto
,
M.
,
Miyamoto
,
S.
,
Mizoguchi
,
A.
,
Kume
,
N.
,
Kita
,
T.
, and
Hashimoto
,
N.
,
2002
, “
Mouse Model of Cerebral Aneurysm—Experimental Induction by Renal Hypertension and Local Hemodynamic Changes
,”
Stroke
,
33
(
7
), pp.
1911
1915
.
77.
Sullivan
,
C. J.
, and
Hoying
,
J. B.
,
2002
, “
Flow-Dependent Remodeling in the Carotid Artery of Fibroblast Growth Factor-2 Knockout Mice
,”
Arterioscler. Thromb. Vasc. Biol.
,
22
(
7
), pp.
1100
1105
.
78.
Millon
,
A.
,
Canet-Soulas
,
E.
,
Boussel
,
L.
,
Fayad
,
Z.
, and
Douek
,
P.
,
2014
, “
Animal Models of Atherosclerosis and Magnetic Resonance Imaging for Monitoring Plaque Progression
,”
Vascular
,
22
(
3
), pp.
221
237
.
79.
Shi
,
Z. S.
,
Feng
,
L.
,
He
,
X.
,
Ishii
,
A.
,
Goldstine
,
J.
,
Vinters
,
H. V.
, and
Vinuela
,
F.
,
2009
, “
Vulnerable Plaque in a Swine Model of Carotid Atherosclerosis
,”
Am. J. Neuroradiol.
,
30
(
3
), pp.
469
472
.
80.
de la Monte
,
S. M.
,
Moore
,
G. W.
,
Monk
,
M. A.
, and
Hutchins
,
G. M.
,
1985
, “
Risk Factors for the Development and Rupture of Intracranial Berry Aneurysms
,”
Am. J. Med.
,
78
(
6
), pp.
957
964
.
81.
Cheng
,
C.
,
Tempel
,
D.
,
van Haperen
,
R.
,
van der Baan
,
A.
,
Grosveld
,
F.
,
Daemen
,
M. J. A. P.
,
Krams
,
R.
, and
de Crom
,
R.
,
2006
, “
Atherosclerotic Lesion Size and Vulnerability are Determined by Patterns of Fluid Shear Stress
,”
Circulation
,
113
(
23
), pp.
2744
2753
.
82.
Meng
,
H.
,
Wang
,
Z. J.
,
Hoi
,
Y.
,
Gao
,
L.
,
Metaxa
,
E.
,
Swartz
,
D. D.
, and
Kolega
,
J.
,
2007
, “
Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation
,”
Stroke
,
38
(
6
), pp.
1924
1931
.
83.
De Wilde
,
D.
,
Trachet
,
B.
,
De Meyer
,
G.
, and
Segers
,
P.
,
2016
, “
The Influence of Anesthesia and Fluid-Structure Interaction on Simulated Shear Stress Patterns in the Carotid Bifurcation of Mice
,”
J. Biomech.
,
49
(
13
), pp.
2741
2747
.
84.
De Wilde
,
D.
,
Trachet
,
B.
,
Debusschere
,
N.
,
Iannaccone
,
F.
,
Swillens
,
A.
,
Degroote
,
J.
,
Vierendeels
,
J.
,
De Meyer
,
G. R. Y.
, and
Segers
,
P.
,
2016
, “
Assessment of Shear Stress Related Parameters in the Carotid Bifurcation Using Mouse-Specific FSI Simulations
,”
J. Biomech.
,
49
(
11
), pp.
2135
2142
.
85.
Meng
,
H.
,
Tutino
,
V. M.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.
86.
Wang
,
Z. J.
,
Kolega
,
J.
,
Hoi
,
Y. M.
,
Gao
,
L.
,
Swartz
,
D. D.
,
Levy
,
E. I.
,
Mocco
,
J.
, and
Meng
,
H.
,
2009
, “
Molecular Alterations Associated With Aneurysmal Remodeling are Localized in the High Hemodynamic Stress Region of a Created Carotid Bifurcation
,”
Neurosurgery
,
65
(
1
), pp.
169
178
.
87.
Kadirvel
,
R.
,
Ding
,
Y. H.
,
Dai
,
D. Y.
,
Zakaria
,
H.
,
Robertson
,
A. M.
,
Danielson
,
M. A.
,
Lewis
,
D. A.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F.
,
2007
, “
The Influence of Hemodynamic Forces on Biomarkers in the Walls of Elastase-Induced Aneurysms in Rabbits
,”
Neuroradiology
,
49
(
12
), pp.
1041
1053
.
88.
Radaelli
,
A. G.
,
Augsburger
,
L.
,
Cebral
,
J. R.
,
Ohta
,
M.
,
Rufenacht
,
D. A.
,
Balossino
,
R.
,
Benndorf
,
G.
,
Hose
,
D. R.
,
Marzo
,
A.
,
Metcalfe
,
R.
,
Mortier
,
P.
,
Mut
,
F.
,
Reymond
,
P.
,
Socci
,
L.
,
Verhegghe
,
B.
, and
Frangi
,
A. F.
,
2008
, “
Reproducibility of Haemodynamical Simulations in a Subject-Specific Stented Aneurysm Model—A Report on the Virtual Intracranial Stenting Challenge 2007
,”
J. Biomech.
,
41
(
10
), pp.
2069
2081
.
89.
Metaxa
,
E.
,
Tremmel
,
M.
,
Natarajan
,
S. K.
,
Xiang
,
J.
,
Paluch
,
R. A.
,
Mandelbaum
,
M.
,
Siddiqui
,
A. H.
,
Kolega
,
J.
,
Mocco
,
J.
, and
Meng
,
H.
,
2010
, “
Characterization of Critical Hemodynamics Contributing to Aneurysmal Remodeling at the Basilar Terminus in a Rabbit Model
,”
Stroke
,
41
(
8
), pp.
1774
1782
.
90.
Tremmel
,
M.
,
Xiang
,
J.
,
Hoi
,
Y.
,
Kolega
,
J.
,
Siddiqui
,
A. H.
,
Mocco
,
J.
, and
Meng
,
H.
,
2010
, “
Mapping Vascular Response to In Vivo Hemodynamics: Application to Increased Flow at the Basilar Terminus
,”
Biomech. Model. Mechanobiol.
,
9
(
4
), pp.
421
434
.
91.
Cebral
,
J. R.
, and
Lohner
,
R.
,
2005
, “
Efficient Simulation of Blood Flow Past Complex Endovascular Devices Using an Adaptive Embedding Technique
,”
IEEE Trans. Med. Imaging
,
24
(
4
), pp.
468
476
.
92.
Ma
,
D.
,
Dargush
,
G. F.
,
Natarajan
,
S. K.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2012
, “
Computer Modeling of Deployment and Mechanical Expansion of Neurovascular Flow Diverter in Patient-Specific Intracranial Aneurysms
,”
J. Biomech.
,
45
(
13
), pp.
2256
2263
.
93.
Kim
,
Y. H.
,
Xu
,
X. F.
, and
Lee
,
J. S.
,
2010
, “
The Effect of Stent Porosity and Strut Shape on Saccular Aneurysm and Its Numerical Analysis With Lattice Boltzmann Method
,”
Ann. Biomed. Eng.
,
38
(
7
), pp.
2274
2292
.
94.
Berg
,
P.
,
Iosif
,
C.
,
Ponsonnard
,
S.
,
Yardin
,
C.
,
Janiga
,
G.
, and
Mounayer
,
C.
,
2016
, “
Endothelialization of Over- and Undersized Flow-Diverter Stents at Covered Vessel Side Branches: An In Vivo and in Silico Study
,”
J. Biomech.
,
49
(
1
), pp.
4
12
.
95.
Iosif
,
C.
,
Berg
,
P.
,
Ponsonnard
,
S.
,
Caries
,
P.
,
Saleme
,
S.
,
Pedroio-Siiveira
,
E.
,
Mendes
,
G.
,
Waihrich
,
E.
,
Trolliard
,
G.
,
Couquet
,
C. Y.
,
Yardin
,
C.
, and
Mounayer
,
C.
,
2016
, “
Role of Terminal and Anastomotic Circulation in the Patency of Arteries Jailed by Flow-Diverting Stents: Animal Flow Model Evaluation and Preliminary Results
,”
J. Neurosurg.
,
125
(
4
), pp.
898
908
.
96.
Huang
,
Q. H.
,
Xu
,
J. Y.
,
Cheng
,
J. Y.
,
Wang
,
S. Z.
,
Wang
,
K. Z.
, and
Liu
,
J. M.
,
2013
, “
Hemodynamic Changes by Flow Diverters in Rabbit Aneurysm Models a Computational Fluid Dynamic Study Based on Micro-Computed Tomography Reconstruction
,”
Stroke
,
44
(
7
), pp.
1936
1941
.
97.
Cebral
,
J. R.
,
Mut
,
F.
,
Raschi
,
M.
,
Hodis
,
S.
,
Ding
,
Y. H.
,
Erickson
,
B. J.
,
Kadirvel
,
R.
, and
Kallmes
,
D. F.
,
2014
, “
Analysis of Hemodynamics and Aneurysm Occlusion After Flow-Diverting Treatment in Rabbit Models
,”
Am. J. Neuroradiol.
,
35
(
8
), pp.
1567
1573
.
98.
Jia
,
L.
,
Wang
,
L. H.
,
Wei
,
F.
,
Yu
,
H. B.
,
Dong
,
H. Y.
,
Wang
,
B.
,
Lu
,
Z.
,
Sun
,
G. J.
,
Chen
,
H. Y.
,
Meng
,
J.
,
Li
,
B.
,
Zhang
,
R. N.
,
Bi
,
X. Q.
,
Wang
,
Z.
,
Pang
,
H. Y.
, and
Jiang
,
A. L.
,
2015
, “
Effects of Wall Shear Stress in Venous Neointimal Hyperplasia of Arteriovenous Fistulae
,”
Nephrology
,
20
(
5
), pp.
335
342
.
99.
Krishnamoorthy
,
M. K.
,
Banerjee
,
R. K.
,
Wang
,
Y.
,
Zhang
,
J. H.
,
Roy
,
A. S.
,
Khoury
,
S. F.
,
Arend
,
L. J.
,
Rudich
,
S.
, and
Roy-Chaudhury
,
P.
,
2008
, “
Hemodynamic Wall Shear Stress Profiles Influence the Magnitude and Pattern of Stenosis in a Pig AV Fistula
,”
Kidney Int.
,
74
(
11
), pp.
1410
1419
.
100.
Rajabi-Jagahrgh
,
E.
,
Krishnamoorthy
,
M. K.
,
Wang
,
Y.
,
Choe
,
A.
,
Roy-Chaudhury
,
P.
, and
Banerjee
,
R. K.
,
2013
, “
Influence of Temporal Variation in Wall Shear Stress on Intima-Media Thickening in Arteriovenous Fistulae
,”
Semin. Dial.
,
26
(
4
), pp.
511
519
.
101.
Rajabi-Jagahrgh
,
E.
,
Krishnamoorthy
,
M. K.
,
Roy-Chaudhury
,
P.
,
Succop
,
P.
,
Wang
,
Y.
,
Choe
,
A.
, and
Banerjee
,
R. K.
,
2013
, “
Longitudinal Assessment of Hemodynamic Endpoints in Predicting Arteriovenous Fistula Maturation
,”
Semin. Dial.
,
26
(
2
), pp.
208
215
.
102.
Rajabi-Jagahrgh
,
E.
,
Roy-Chaudhury
,
P.
,
Wang
,
Y.
,
Al-Rjoub
,
M.
,
Campos-Naciff
,
B.
,
Choe
,
A.
,
Dumoulin
,
C.
, and
Banerjee
,
R. K.
,
2014
, “
New Techniques for Determining the Longitudinal Effects of Local Hemodynamics on the Intima-Media Thickness in Arteriovenous Fistulae in an Animal Model
,”
Semin. Dial.
,
27
(
4
), pp.
424
435
.
103.
Dearani
,
J. A.
,
Danielson
,
G. K.
,
Puga
,
F. J.
,
Schaff
,
H. V.
,
Warnes
,
C. W.
,
Driscoll
,
D. J.
,
Schleck
,
C. D.
, and
Ilstrup
,
D. M.
,
2003
, “
Late Follow-Up of 1095 Patients Undergoing Operation for Complex Congenital Heart Disease Utilizing Pulmonary Ventricle to Pulmonary Artery Conduits
,”
Ann. Thorac. Surg.
,
75
(
2
), pp.
399
410
.
104.
Berdajs
,
D. A.
,
Mosbahi
,
S.
,
Charbonnier
,
D.
,
Hullin
,
R.
, and
von Segesser
,
L. K.
,
2015
, “
Analysis of Flow Dynamics in Right Ventricular Outflow Tract
,”
J. Surg. Res.
,
197
(
1
), pp.
50
57
.
105.
Mosbahi
,
S.
,
Mickaily-Huber
,
E.
,
Charbonnier
,
D.
,
Hullin
,
R.
,
Burki
,
M.
,
Ferrari
,
E.
,
von Segesser
,
L. K.
, and
Berdajs
,
D. A.
,
2014
, “
Computational Fluid Dynamics of the Right Ventricular Outflow Tract and of the Pulmonary Artery: A Bench Model of Flow Dynamics
,”
Interact Cardiovasc. Thorac. Surg.
,
19
(
4
), pp.
611
616
.
106.
Berdajs
,
D.
,
Mosbahi
,
S.
,
Vos
,
J.
,
Charbonnier
,
D.
,
Hullin
,
R.
, and
von Segesser
,
L. K.
,
2015
, “
Fluid Dynamics Simulation of Right Ventricular Outflow Tract Oversizing
,”
Interact Cardiovasc. Thorac. Surg.
,
21
(
2
), pp.
176
182
.
107.
Bove
,
E. L.
,
de Leval
,
M. R.
,
Migliavacca
,
F.
,
Guadagni
,
G.
, and
Dubini
,
G.
,
2003
, “
Computational Fluid Dynamics in the Evaluation of Hemodynamic Performance of Cavopulmonary Connections After the Norwood Procedure for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
,
126
(
4
), pp.
1040
1047
.
108.
Corno
,
A. F.
,
Vergara
,
C.
,
Subramanian
,
C.
,
Johnson
,
R. A.
,
Passerini
,
T.
,
Veneziani
,
A.
,
Formaggia
,
L.
,
Alphonso
,
N.
,
Quarteroni
,
A.
, and
Jarvis
,
J. C.
,
2010
, “
Assisted Fontan Procedure: Animal and In Vitro Models and Computational Fluid Dynamics Study
,”
Interact Cardiovasc. Thorac. Surg.
,
10
(
5
), pp.
679
683
.
109.
Bove
,
E. L.
,
de Leval
,
M. R.
,
Migliavacca
,
F.
,
Balossino
,
R.
, and
Dubini
,
G.
,
2007
, “
Toward Optimal Hemodynamics: Computer Modeling of the Fontan Circuit
,”
Pediatr. Cardiol.
,
28
(
6
), pp.
477
481
.
110.
Taylor
,
C. A.
,
Fonte
,
T. A.
, and
Min
,
J. K.
,
2013
, “
Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve Scientific Basis
,”
J. Am. Coll. Cardiol.
,
61
(
22
), pp.
2233
2241
.
111.
Sengupta
,
D.
,
Kahn
,
A. M.
,
Kung
,
E.
,
Moghadam
,
M. E.
,
Shirinsky
,
O.
,
Lyskina
,
G. A.
,
Burns
,
J. C.
, and
Marsden
,
A. L.
,
2014
, “
Thrombotic Risk Stratification Using Computational Modeling in Patients With Coronary Artery Aneurysms Following Kawasaki Disease
,”
Biomech. Model. Mechanobiol.
,
13
(
6
), pp.
1261
1276
.
112.
de Zélicourt
,
D. A.
,
Marsden
,
A.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2010
, “
Imaging and Patient-Specific Simulations for the Fontan Surgery: Current Methodologies and Clinical Applications
,”
Prog. Pediatr. Cardiol.
,
30
(
1–2
), pp.
31
44
.
113.
Esmaily-Moghadam
,
M.
,
Hsia
,
T. Y.
,
Marsden
,
A. L.
, and
Investigators
,
M.
,
2015
, “
The Assisted Bidirectional Glenn: A Novel Surgical Approach for First-Stage Single-Ventricle Heart Palliation
,”
J. Thorac. Cardiovasc. Surg.
,
149
(
3
), pp.
699
705
.
114.
Kung
,
E.
,
Pennati
,
G.
,
Migliavacca
,
F.
,
Hsia
,
T. Y.
,
Figliola
,
R.
,
Marsden
,
A.
, and
Giardini
,
A.
,
2014
, “
A Simulation Protocol for Exercise Physiology in Fontan Patients Using a Closed Loop Lumped-Parameter Model
,”
Trans. ASME J. Biomech. Eng.
,
136
(
8
), p.
081007
.
115.
Long
,
C.
,
Hsu
,
M. C.
,
Bazilevs
,
Y.
,
Feinstein
,
J.
, and
Marsden
,
A.
,
2012
, “
Fluid–Structure Interaction Simulations of the Fontan Procedure Using Variable Wall Properties
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
5
), pp.
513
527
.
116.
Marsden
,
A. L.
,
Reddy
,
V. M.
,
Shadden
,
S. C.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2010
, “
A New Multiparameter Approach to Computational Simulation for Fontan Assessment and Redesign
,”
Congenital Heart Dis.
,
5
(
2
), pp.
104
117
.
117.
Rayz
,
V. L.
,
Boussel
,
L.
,
Acevedo-Bolton
,
G.
,
Martin
,
A. J.
,
Young
,
W. L.
,
Lawton
,
M. T.
,
Higashida
,
R.
, and
Saloner
,
D.
,
2008
, “
Numerical Simulations of Flow in Cerebral Aneurysms: Comparison of CFD Results and In Vivo MRI Measurements
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051011
.
118.
Koo
,
V.
,
Hamilton
,
P.
, and
Williamson
,
K.
,
2006
, “
Non-Invasive In Vivo Imaging in Small Animal Research
,”
Cell. Oncol.
,
28
(
4
), pp.
127
139
.
119.
Ram
,
R.
,
Mickelsen
,
D. M.
,
Theodoropoulos
,
C.
, and
Blaxall
,
B. C.
,
2011
, “
New Approaches in Small Animal Echocardiography: Imaging the Sounds of Silence
,”
Am. J. Physiol.
,
301
(
5
), pp.
H1765
H1780
.
120.
Balaban
,
R. S.
, and
Hampshire
,
V. A.
,
2001
, “
Challenges in Small Animal Noninvasive Imaging
,”
ILAR J.
,
42
(
3
), pp.
248
262
.
121.
Taylor
,
T. W.
, and
Yamaguchi
,
T.
,
1994
, “
Three-Dimensional Simulation of Blood Flow in a Abdominal Aortic Aneurysm-Steady and Unsteady Flow Cases
,”
Trans. ASME J. Biomech. Eng.
,
116
(
1
), pp.
89
97
.
122.
Heil
,
M.
, and
Schaper
,
W.
,
2004
, “
Influence of Mechanical, Cellular, and Molecular Factors on Collateral Artery Growth (Arteriogenesis)
,”
Circ. Res.
,
95
(
5
), pp.
449
458
.
You do not currently have access to this content.