Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

References

References
1.
Forbes
,
P. A.
,
De Bruijn
,
E.
,
Schouten
,
A. C.
,
Van Der Helm
,
F. C. T.
, and
Happee
,
R.
,
2013
, “
Dependency of Human Neck Reflex Responses on the Bandwidth of Pseudorandom Anterior-Posterior Torso Perturbations
,”
Exp. Brain Res.
,
226
(
1
), pp.
1
14
.
2.
Peng
,
G. C. Y.
,
Hain
,
T. C.
, and
Peterson
,
B. W.
,
1996
, “
A Dynamical Model for Reflex Activated Head Movements in the Horizontal Plane
,”
Biol. Cybern.
,
75
(
4
), pp.
309
319
.
3.
Peterson
,
B. W.
,
Choi
,
H.
,
Hain
,
T. C.
,
Keshner
,
E. A.
, and
Peng
,
G. C. Y.
,
2001
, “
Dynamic and Kinematic Strategies for Head Movement Control
,”
Ann. N. Y. Acad. Sci.
,
942
(
1
), pp.
381
393
.
4.
Chen
,
K. J.
,
Keshner
,
E. A.
,
Peterson
,
B. W.
, and
Hain
,
T. C.
,
2002
, “
Modeling Head Tracking of Visual Targets
,”
J. Vestib. Res.
,
12
(
1
), pp.
25
33
.https://pdfs.semanticscholar.org/319b/fd68f2ed755423c2d7be5bd094f49318c2f1.pdf
5.
Goodworth
,
A. D.
, and
Peterka
,
R. J.
,
2009
, “
Contribution of Sensorimotor Integration to Spinal Stabilization in Humans
,”
J. Neurophysiol.
,
102
(
1
), pp.
496
512
.
6.
Moorhouse
,
K. M.
, and
Granata
,
K. P.
,
2007
, “
Role of Reflex Dynamics in Spinal Stability: Intrinsic Muscle Stiffness Alone is Insufficient for Stability
,”
J. Biomech.
,
40
(
5
), pp.
1058
1065
.
7.
van Drunen
,
P.
,
Maaswinkel
,
E.
,
der Helm
,
F. C. T.
,
van Dieën
,
J. H.
, and
Happee
,
R.
,
2013
, “
Identifying Intrinsic and Reflexive Contributions to Low-Back Stabilization
,”
J. Biomech.
,
46
(
8
), pp.
1440
1446
.
8.
van der Helm
,
F. C. T.
,
Schouten
,
A. C.
,
de Vlugt
,
E.
, and
Brouwn
,
G. G.
,
2002
, “
Identification of Intrinsic and Reflexive Components of Human Arm Dynamics During Postural Control
,”
J. Neurosci. Methods
,
119
(
1
), pp.
1
14
.
9.
Schouten
,
A. C.
,
De Vlugt
,
E.
,
van Hilten
,
J. J. B.
, and
Van Der Helm
,
F. C. T.
,
2008
, “
Quantifying Proprioceptive Reflexes During Position Control of the Human Arm
,”
IEEE Trans. Biomed. Eng.
,
55
(
1
), pp.
311
321
.
10.
Yua
,
T. F.
, and
J.Wilson
,
A.
,
2014
, “
A Passive Movement Method for Parameter Estimation of a Musculo-Skeletal Arm Model Incorporating a Modified Hill Muscle Model
,”
Comput. Methods Programs Biomed.
,
114
(
3
), pp.
e46
e59
.
11.
Lin
,
D. C.
, and
Nichols
,
T. R.
,
2003
, “
Parameter Estimation in a Crossbridge Muscle Model
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
132
140
.
12.
Priess
,
M. C.
,
Choi
,
J.
,
Radcliffe
,
C.
,
Popovich
,
J. M.
,
Cholewicki
,
J.
, and
Reeves
,
N. P.
,
2015
, “
Time-Domain Optimal Experimental Design in Human Seated Postural Control Testing
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
5
), pp.
545011
545017
.
13.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
PTR Prentice Hall
,
Upper Saddle River, NJ
.
14.
Grandjean
,
T. R. B.
,
Chappell
,
M. J.
,
Yates
,
J. W. T.
, and
Evans
,
N. D.
,
2014
, “
Structural Identifiability Analyses of Candidate Models for In Vivo Pitavastatin Hepatic Uptake
,”
Comput. Methods Programs Biomed.
,
114
(
3
), pp.
e60
e69
.
15.
Ljung
,
L.
,
2013
, “
Some Classical and Some New Ideas for Identification of Linear Systems
,”
J. Control. Autom. Electr. Syst.
,
24
(
1–2
), pp.
3
10
.
16.
Rojas
,
C. R.
,
Welsh
,
J. S.
,
Goodwin
,
G. C.
, and
Feuer
,
A.
,
2007
, “
Robust Optimal Experiment Design for System Identification
,”
Automatica
,
43
(
6
), pp.
993
1008
.
17.
Morris
,
E. D.
,
Saidel
,
G. M.
,
Chisolm
,
G. M.
, and
Chisolm 3rd
,
G. M.
,
1991
, “
Optimal Design of Experiments to Estimate LDL Transport Parameters in Arterial Wall
,”
Am. J. Physiol. Circ. Physiol.
,
261
(
3
), pp.
H929
H949
.
18.
Zeinali-Davarani
,
S.
,
Choi
,
J.
, and
Baek
,
S.
,
2009
, “
On Parameter Estimation for Biaxial Mechanical Behavior of Arteries
,”
J. Biomech.
,
42
(
4
), pp.
524
530
.
19.
Oishi
,
M. M. K.
,
TalebiFard
,
P.
, and
McKeown
,
M. J.
,
2011
, “
Assessing Manual Pursuit Tracking in Parkinson's Disease Via Linear Dynamical Systems
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2263
2273
.
20.
Bozdogan
,
H.
,
2000
, “
Akaike's Information Criterion and Recent Developments in Information Complexity
,”
J. Math. Psychol.
,
44
(
1
), pp.
62
91
.
21.
Rasouli
,
M.
,
Westwick
,
D. T.
, and
Rosehart
,
W. D.
,
2012
, “
Reducing Induction Motor Identified Parameters Using a Nonlinear Lasso Method
,”
Electr. Power Syst. Res.
,
88
, pp.
1
8
.
22.
Yun
,
Y.
,
Kim
,
H.-C.
,
Shin
,
S. Y.
,
Lee
,
J.
,
Deshpande
,
A. D.
, and
Kim
,
C.
,
2014
, “
Statistical Method for Prediction of Gait Kinematics With Gaussian Process Regression
,”
J. Biomech.
,
47
(
1
), pp.
186
192
.
23.
Ramadan
,
A.
,
Choi
,
J.
,
Radcliffe
,
C. J.
,
Cholewicki
,
J.
,
Reeves
,
N. P.
, and
Popovich
,
J. M.
,
2017
, “
Robotic Solutions to Facilitate Studying Human Motor Control
,”
14th International Conference on Ubiquitous Robots and Ambient Intelligence
(
URAI
), Jeju, South Korea, June 28–July 1, pp.
174
178
.
24.
Popovich
,
J. M.
,
Reeves
,
N. P.
,
Priess
,
M. C.
,
Cholewicki
,
J.
,
Choi
,
J.
, and
Radcliffe
,
C. J.
,
2015
, “
Quantitative Measures of Sagittal Plane Head–Neck Control: A Test–Retest Reliability Study
,”
J. Biomech.
,
48
(
3
), pp.
549
554
.
25.
Garatti
,
S.
, and
Bitmead
,
R. R.
,
2010
, “
On Resampling and Uncertainty Estimation in Linear System Identification
,”
Automatica
,
46
(
5
), pp.
785
795
.
26.
Hjalmarsson
,
H.
,
2005
, “
From Experiment Design to Closed-Loop Control
,”
Automatica
,
41
(
3
), pp.
393
438
.
27.
Aguero
,
J. C.
, and
Goodwin
,
G. C.
,
2006
, “
On the Optimality of Open and Closed Loop Experiments in System Identification
,”
45th IEEE Conference on Decision and Control
(
CDC
), San Diego, CA, Dec. 13–15, pp.
163
168
.
28.
Emery
,
A. F.
, and
Nenarokomov
,
A. V.
,
1998
, “
Optimal Experiment Design
,”
Meas. Sci. Technol.
,
9
(
6
), pp.
864
876
.
29.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc. Ser. B
,
58
(
1
), pp.
267
288
.http://www.jstor.org/stable/2346178
30.
Tibshirani
,
R.
,
2011
, “
Regression Shrinkage and Selection Via the Lasso: A Retrospective
,”
J. R. Stat. Soc. Ser. B
,
73
(
3
), pp.
273
282
.
31.
Golub
,
G.
, and
Loan
,
C. V.
,
2013
,
Matrix Computations
,
JHU Press
, Baltimore, MD.
32.
Joshi
,
S.
, and
Boyd
,
S.
,
2009
, “
Sensor Selection Via Convex Optimization
,”
IEEE Trans. Signal Process
,
57
(
2
), pp.
451
462
.
33.
Meinshausen
,
N.
,
2007
, “
Relaxed Lasso
,”
Comput. Stat. Data Anal.
,
52
(
1
), pp.
374
393
.
You do not currently have access to this content.