Computational models that predict in vivo joint loading and muscle forces can potentially enhance and augment our knowledge of both typical and pathological gaits. To adopt such models into clinical applications, studies validating modeling predictions are essential. This study created a full-body musculoskeletal model using data from the “Sixth Grand Challenge Competition to Predict in vivo Knee Loads.” This model incorporates subject-specific geometries of the right leg in order to concurrently predict knee contact forces, ligament forces, muscle forces, and ground contact forces. The objectives of this paper are twofold: (1) to describe an electromyography (EMG)-driven modeling methodology to predict knee contact forces and (2) to validate model predictions by evaluating the model predictions against known values for a patient with an instrumented total knee replacement (TKR) for three distinctly different gait styles (normal, smooth, and bouncy gaits). The model integrates a subject-specific knee model onto a previously validated generic full-body musculoskeletal model. The combined model included six degrees-of-freedom (6DOF) patellofemoral and tibiofemoral joints, ligament forces, and deformable contact forces with viscous damping. The foot/shoe/floor interactions were modeled by incorporating shoe geometries to the feet. Contact between shoe segments and the floor surface was used to constrain the shoe segments. A novel EMG-driven feedforward with feedback trim motor control strategy was used to concurrently estimate muscle forces and knee contact forces from standard motion capture data collected on the individual subject. The predicted medial, lateral, and total tibiofemoral forces represented the overall measured magnitude and temporal patterns with good root-mean-squared errors (RMSEs) and Pearson's correlation (p2). The model accuracy was high: medial, lateral, and total tibiofemoral contact force RMSEs = 0.15, 0.14, 0.21 body weight (BW), and (0.92 < p2 < 0.96) for normal gait; RMSEs = 0.18 BW, 0.21 BW, 0.29 BW, and (0.81 < p2 < 0.93) for smooth gait; and RMSEs = 0.21 BW, 0.22 BW, 0.33 BW, and (0.86 < p2 < 0.95) for bouncy gait, respectively. Overall, the model captured the general shape, magnitude, and temporal patterns of the contact force profiles accurately. Potential applications of this proposed model include predictive biomechanics simulations, design of TKR components, soft tissue balancing, and surgical simulation.

References

References
1.
Kellett
,
C. F.
,
Short
,
A.
,
Price
,
A.
,
Gill
,
H. S.
, and
Murray
,
D. W.
,
2004
, “
In Vivo Measurement of Total Knee Replacement Wear
,”
Knee
,
11
(
3
), pp.
183
187
.
2.
Sathasivam
,
S.
, and
Walker
,
P. S.
,
1998
, “
Computer Model to Predict Subsurface Damage in Tibial Inserts of Total Knees
,”
J. Orthop. Res.
,
16
(
5
), pp.
564
571
.
3.
Wimmer
,
M. A.
, and
Andriacchi
,
T. P.
,
1997
, “
Tractive Forces During Rolling Motion of the Knee: Implications for Wear in Total Knee Replacement
,”
J. Biomech.
,
30
(
2
), pp.
131
137
.
4.
Andriacchi
,
T. P.
,
Mundermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
, “
A Framework for the In Vivo Pathomechanics of Osteoarthritis at the Knee
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
447
457
.
5.
Zhang
,
L.
,
Hu
,
J.
, and
Athanasiou
,
K. A.
,
2009
, “
The Role of Tissue Engineering in Articular Cartilage Repair and Regeneration
,”
Crit. Rev. Biomed. Eng.
,
37
(
1–2
), pp.
1
57
.
6.
D'Lima
,
D. D.
,
Townsend
,
C. P.
,
Arms
,
S. W.
,
Morris
,
B. A.
, and
Colwell
, and
C. W.
, Jr
.,
2005
, “
An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces
,”
J. Biomech.
,
38
(
2
), pp.
299
304
.
7.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.
8.
Ding
,
Z.
,
Nolte
,
D.
,
Kit Tsang
,
C.
,
Cleather
,
D. J.
,
Kedgley
,
A. E.
, and
Bull
,
A. M.
,
2016
, “
In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021018
.
9.
Jung
,
Y.
,
Phan
,
C. B.
, and
Koo
,
S.
,
2016
, “
Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021016
.
10.
Moissenet
,
F.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2016
, “
Influence of the Level of Muscular Redundancy on the Validity of a Musculoskeletal Model
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021019
.
11.
Smith
,
C. R.
,
Vignos
,
M. F.
,
Lenhart
,
R. L.
,
Kaiser
,
J.
, and
Thelen
,
D. G.
,
2016
, “
The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021017
.
12.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.
13.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
14.
Kuo
,
A. D.
,
1998
, “
A Least-Squares Estimation Approach to Improving the Precision of Inverse Dynamics Computations
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
148
159
.
15.
Lloyd
,
D. G.
, and
Buchanan
,
T. S.
,
1996
, “
A Model of Load Sharing Between Muscles and Soft Tissues at the Human Knee During Static Tasks
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
367
376
.
16.
Lloyd
,
D. G.
, and
Besier
,
T. F.
,
2003
, “
An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
,
36
(
6
), pp.
765
776
.
17.
Manal
,
K.
, and
Buchanan
,
T. S.
,
2013
, “
An Electromyogram-Driven Musculoskeletal Model of the Knee to Predict In Vivo Joint Contact Forces During Normal and Novel Gait Patterns
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021014
.
18.
Higginson
,
J. S.
,
Ramsay
,
J. W.
, and
Buchanan
,
T. S.
,
2012
, “
Hybrid Models of the Neuromusculoskeletal System Improve Subject-Specificity
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
226
(
2
), pp.
113
119
.
19.
Sartori
,
M.
,
Farina
,
D.
, and
Lloyd
,
D. G.
,
2014
, “
Hybrid Neuromusculoskeletal Modeling to Best Track Joint Moments Using a Balance Between Muscle Excitations Derived From Electromyograms and Optimization
,”
J. Biomech.
,
47
(
15
), pp.
3613
3621
.
20.
Mansouri
,
M.
,
Clark
,
A. E.
,
Seth
,
A.
, and
Reinbolt
,
J. A.
,
2016
, “
Rectus Femoris Transfer Surgery Affects Balance Recovery in Children With Cerebral Palsy: A Computer Simulation Study
,”
Gait Posture
,
43
, pp.
24
30
.
21.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
22.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech.
,
43
(
6
), pp.
1055
1060
.
23.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.
24.
Kinney
,
A. L.
,
Besier
,
T. F.
,
D'Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Update on Grand Challenge Competition to Predict In Vivo Knee Loads
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021012
.
25.
Meyer
,
A. J.
,
D'Lima
,
D. D.
,
Banks
,
S. A.
,
Coburn
,
J.
,
Harman
,
M.
,
Mikashima
,
Y.
, and
Fregly
,
B. J.
,
2011
, “
Evaluation Regression Equations Medial Lateral Contact Force From Instrumented Knee Implant Data
,”
ASME
Paper No. SBC2011-53938.
26.
Guess
,
T. M.
,
Stylianou
,
A. P.
, and
Kia
,
M.
,
2014
, “
Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021032
.
27.
Kia
,
M.
,
Stylianou
,
A. P.
, and
Guess
,
T. M.
,
2014
, “
Evaluation of a Musculoskeletal Model With Prosthetic Knee Through Six Experimental Gait Trials
,”
Med. Eng. Phys.
,
36
(
3
), pp.
335
344
.
28.
Meister
,
B. R.
,
Michael
,
S. P.
,
Moyer
,
R. A.
,
Kelly
,
J. D.
, and
Schneck
,
C. D.
,
2000
, “
Anatomy and Kinematics of the Lateral Collateral Ligament of the Knee
,”
Am. J. Sports Med.
,
28
(
6
), pp.
869
878
.
29.
Park
,
S. E.
,
DeFrate
,
L. E.
,
Suggs
,
J. F.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2005
, “
The Change in Length of the Medial and Lateral Collateral Ligaments During In Vivo Knee Flexion
,”
Knee
,
12
(
5
), pp.
377
382
.
30.
Hartshorn
,
T.
,
Otarodifard
,
K.
,
White
,
E. A.
, and
Hatch
,
G. F.
, III
,
2013
, “
Radiographic Landmarks for Locating the Femoral Origin of the Superficial Medial Collateral Ligament
,”
Am. J. Sports Med.
,
41
(
11
), pp.
2527
2532
.
31.
LaPrade
,
R. F.
,
Engebretsen
,
A. H.
,
Ly
,
T. V.
,
Johansen
,
S.
,
Wentorf
,
F. A.
, and
Engebretsen
,
L.
,
2007
, “
The Anatomy of the Medial Part of the Knee
,”
J. Bone Jt. Surg. Am.
,
89
(
9
), pp.
2000
2010
.
32.
Amis
,
A. A.
,
Firer
,
P.
,
Mountney
,
J.
,
Senavongse
,
W.
, and
Thomas
,
N. P.
,
2003
, “
Anatomy and Biomechanics of the Medial Patellofemoral Ligament
,”
Knee
,
10
(
3
), pp.
215
220
.
33.
Stephen
,
J. M.
,
Lumpaopong
,
P.
,
Deehan
,
D. J.
,
Kader
,
D.
, and
Amis
,
A. A.
,
2012
, “
The Medial Patellofemoral Ligament: Location of Femoral Attachment and Length Change Patterns Resulting From Anatomic and Nonanatomic Attachments
,”
Am. J. Sports Med.
,
40
(
8
), pp.
1871
1879
.
34.
Viste
,
A.
,
Chatelet
,
F.
,
Desmarchelier
,
R.
, and
Fessy
,
M. H.
,
2014
, “
Anatomical Study of the Medial Patello-Femoral Ligament: Landmarks for Its Surgical Reconstruction
,”
Surg. Radiol. Anat.
,
36
(
8
), pp.
733
739
.
35.
Bowman
,
K. F.
, Jr
., and
Sekiya
,
J. K.
,
2009
, “
Anatomy and Biomechanics of the Posterior Cruciate Ligament and Other Ligaments of the Knee
,”
Oper. Tech. Sports Med.
,
17
(
3
), pp.
126
134
.
36.
Chandrasekaran
,
S.
,
Ma
,
D.
,
Scarvell
,
J. M.
,
Woods
,
K. R.
, and
Smith
,
P. N.
,
2012
, “
A Review of the Anatomical, biomechanical and Kinematic Findings of Posterior Cruciate Ligament Injury With Respect to Non-Operative Management
,”
Knee
,
19
(
6
), pp.
738
745
.
37.
Race
,
A.
, and
Amis
,
A. A.
,
1994
, “
The Mechanical Properties of the Two Bundles of the Human Posterior Cruciate Ligament
,”
J. Biomech.
,
27
(
1
), pp.
13
24
.
38.
Osti
,
M.
,
Tschann
,
P.
,
Kunzel
,
K. H.
, and
Benedetto
,
K. P.
,
2012
, “
Anatomic Characteristics and Radiographic References of the Anterolateral and Posteromedial Bundles of the Posterior Cruciate Ligament
,”
Am. J. Sports Med.
,
40
(
7
), pp.
1558
1563
.
39.
Liu
,
F.
,
Gadikota
,
H. R.
,
Kozanek
,
M.
,
Hosseini
,
A.
,
Yue
,
B.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2011
, “
In Vivo Length Patterns of the Medial Collateral Ligament During the Stance Phase of Gait
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
19
(
5
), pp.
719
727
.
40.
Liu
,
F.
,
Yue
,
B.
,
Gadikota
,
H. R.
,
Kozanek
,
M.
,
Liu
,
W.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2010
, “
Morphology of the Medial Collateral Ligament of the Knee
,”
J. Orthop. Surg. Res.
,
5
, p.
69
.
41.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1991
, “
Ligament-Bone Interaction in a Three-Dimensional Model of the Knee
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
263
269
.
42.
Hara
,
K.
,
Mochizuki
,
T.
,
Sekiya
,
I.
,
Yamaguchi
,
K.
,
Akita
,
K.
, and
Muneta
,
T.
,
2009
, “
Anatomy of Normal Human Anterior Cruciate Ligament Attachments Evaluated by Divided Small Bundles
,”
Am. J. Sports Med.
,
37
(
12
), pp.
2386
2391
.
43.
Petersen
,
W.
, and
Zantop
,
T.
,
2007
, “
Anatomy of the Anterior Cruciate Ligament With Regard to Its Two Bundles
,”
Clin. Orthop. Relat. Res.
,
454
, pp.
35
47
.
44.
Robinson
,
J. R.
,
Bull
,
A. M.
, and
Amis
,
A. A.
,
2005
, “
Structural Properties of the Medial Collateral Ligament Complex of the Human Knee
,”
J. Biomech.
,
38
(
5
), pp.
1067
1074
.
45.
Woo
,
S. L.
,
Abramowitch
,
S. D.
,
Kilger
,
R.
, and
Liang
,
R.
,
2006
, “
Biomechanics of Knee Ligaments: Injury, Healing, and Repair
,”
J. Biomech.
,
39
(
1
), pp.
1
20
.
46.
Guess
,
T. M.
,
Razu
,
S.
, and
Jahandar
,
H.
,
2016
, “
Evaluation of Knee Ligament Mechanics Using Computational Models
,”
J. Knee Surg.
,
29
(
2
), pp.
126
137
.
47.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.
48.
Cheng
,
H.
,
Obergefell
,
L.
, and
Rizer
,
A.
,
1994
, “
Generator of Body Data (GEBOD), Manual
,” Defense Technical Information Center, Fort Belvoir, VA, Report No.
AL/CF-TR-1994-0051
.http://www.dtic.mil/docs/citations/ADA289721
49.
Isman
,
R. E.
,
Inman
,
V. T.
, and
Poor
,
P.
,
1969
, “
Anthropometric Studies of the Human Foot and Ankle
,”
Bull Prosthet. Res.
,
11
, pp.
97
129
.https://www.rehab.research.va.gov/jour/69/6/1/97.pdf
50.
Ehrig
,
R. M.
,
Taylor
,
W. R.
,
Duda
,
G. N.
, and
Heller
,
M. O.
,
2006
, “
A Survey of Formal Methods for Determining the Centre of Rotation of Ball Joints
,”
J. Biomech.
,
39
(
15
), pp.
2798
2809
.
51.
Ehrig
,
R. M.
,
Taylor
,
W. R.
,
Duda
,
G. N.
, and
Heller
,
M. O.
,
2007
, “
A Survey of Formal Methods for Determining Functional Joint Axes
,”
J. Biomech.
,
40
(
10
), pp.
2150
2157
.
52.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.
53.
Winters
,
J. M.
,
1995
, “
An Improved Muscle-Reflex Actuator for Use in Large-Scale Neuro-Musculoskeletal Models
,”
Ann. Biomed. Eng.
,
23
(
4
), pp.
359
374
.
54.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.https://www.ncbi.nlm.nih.gov/pubmed/2676342
55.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021005
.
56.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
,
2004
, “
Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
,
20
(
4
), pp.
367
395
.
57.
Knowlton
,
C. B.
,
Wimmer
,
M. A.
, and
Lundberg
,
H. J.
,
2012
, “
Grand Challenge Competition: A Parametric Numerical Model to Predict Vivo Medial Lateral Knee Forces Walking Gaits
,”
ASME
Paper No. SBC2012-80581.
58.
Valente
,
G.
,
Pitto
,
L.
,
Testi
,
D.
,
Seth
,
A.
,
Delp
,
S. L.
,
Stagni
,
R.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2014
, “
Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
,”
PLoS One
,
9
(
11
), p.
e112625
.
You do not currently have access to this content.