Recent designs of ankle-foot orthoses (AFOs) have been influenced by the increasing demand for higher function from active individuals. The biomechanical function of the individual and device is dependent upon the underlying mechanical characteristics of the AFO. Prior mechanical testing of AFOs has primarily focused on rotational stiffness to provide insight into expected functional outcomes; mechanical characteristics pertaining to energy storage and release have not yet been investigated. A pseudostatic bench testing method is introduced to characterize compressive stiffness, device deflection, and motion of solid-ankle, anterior floor reaction, posterior leaf spring, and the intrepid dynamic exoskeletal orthosis (IDEO) AFOs. Each of these four AFOs, donned over a surrogate limb, were compressively loaded at different joint angles to simulate the foot-shank orientation during various subphases of stance. In addition to force–displacement measurements, deflection of each AFO strut and rotation of proximal and supramalleolar segments were analyzed. Although similar compressive stiffness values were observed for AFOs designed to reduce ankle motion, the corresponding strut deflection profile differed based on the respective fabrication material. For example, strut deflection of carbon-fiber AFOs resembled column buckling. Expanded clinical test protocols to include quantification of AFO deflection and rotation during subject use may provide additional insight into design and material effects on performance and functional outcomes, such as energy storage and release.

References

References
1.
Keeling
,
J. J.
,
Gwinn
,
D. E.
,
Tintle
,
S. M.
,
Andersen
,
R. C.
, and
McGuigan
,
F. X.
,
2008
, “
Short-Term Outcomes of Severe Open Wartime Tibial Fractures Treated With Ring External Fixation
,”
J. Bone Jt. Surg., Am.
,
90
(
12
), pp.
2643
2651
.
2.
Shawen
,
S. B.
,
Keeling
,
J. J.
,
Branstetter
,
J.
,
Kirk
,
K. L.
, and
Ficke
,
J. R.
,
2010
, “
The Mangled Foot and Leg: Salvage Versus Amputation
,”
Foot Ankle Clin.
,
15
(
1
), pp.
63
75
.
3.
Patzkowski
,
J. C.
,
Blanck
,
R. V.
,
Owens
,
J. G.
,
Wilken
,
J. M.
,
Blair
,
J. A.
, and
Hsu
,
J. R.
,
2011
, “
Can an Ankle-Foot Orthosis Change Hearts and Minds?
,”
J. Surg. Orthop. Adv.
,
20
(
1
), pp.
8
18
.
4.
Bowker
,
P.
,
Condie
,
D. N.
,
Bader
,
B. L.
, and
Pratt
,
D. J.
,
1993
,
Biomechanical Basis of Orthotic Management
,
Butterworth-Heinemann Ltd
.,
Oxford, UK
.
5.
Lusardi
,
M.
,
Nielsen
,
C. C.
, and
Milagros
,
J.
,
2013
, “
Orthoses in Rehabilitation
,”
Orthotics and Prosthetics in Rehabilitation: A Multidisciplinary Approach
,
Elsevier
,
St. Louis, MO
, pp.
181
455
.
6.
Bartonek
,
A.
,
Eriksson
,
M.
, and
Gutierrez-Farewik
,
E. M.
,
2007
, “
A New Carbon Fibre Spring Orthosis for Children With Plantarflexor Weakness
,”
Gait Posture
,
25
(
4
), pp.
652
656
.
7.
Danielsson
,
A.
, and
Sunnerhagen
,
K. S.
,
2004
, “
Energy Expenditure in Stroke Subjects Walking With a Carbon Composite Ankle Foot Orthosis
,”
J. Rehabil. Med.
,
36
(
4
), pp.
165
168
.
8.
Patzkowski
,
J. C.
,
Blanck
,
R. V.
,
Owens
,
J. G.
,
Wilken
,
J. M.
,
Kirk
,
K. L.
,
Wenke
,
J. C.
, and
Hsu
,
J. R.
,
2012
, “
Comparative Effect of Orthosis Design on Functional Performance
,”
J. Bone Jt. Surg., Am.
,
94
(
6
), pp.
507
515
.
9.
Owens
,
J. G.
,
Blair
,
J. A.
,
Patzkowski
,
J. C.
,
Blanck
,
R. V.
, and
Hsu
,
J. R.
,
2011
, “
Return to Running and Sports Participation After Limb Salvage
,”
J. Trauma: Inj., Infect., Crit. Care
,
71
(
Suppl
.), pp.
S120
S124
.
10.
Wolf
,
S. I.
,
Alimusaj
,
M.
,
Rettig
,
O.
, and
Döderlein
,
L.
,
2008
, “
Dynamic Assist by Carbon Fiber Spring AFOs for Patients With Myelomeningocele
,”
Gait Posture
,
28
(
1
), pp.
175
177
.
11.
Esposito
,
E. R.
,
Choi
,
H. S.
,
Owens
,
J. G.
,
Blanck
,
R. V.
, and
Wilken
,
J. M.
,
2015
, “
Biomechanical Response to Ankle-Foot Orthosis Stiffness During Running
,”
Clin. Biomech.
,
30
(
10
), pp.
1125
1132
.
12.
Esposito
,
E. R.
,
Ranz
,
E. C.
,
Schmidtbauer
,
K. A.
,
Neptune
,
R. R.
, and
Wilken
,
J. M.
,
2017
, “
Ankle-Foot Orthosis Bending Axis Influences Running Mechanics
,”
Gait Posture
,
56
, pp.
147
152
.
13.
Bishop
,
D.
,
Moore
,
A.
, and
Chandrashekar
,
N.
,
2009
, “
A New Ankle Foot Orthosis for Running
,”
Prosthet. Orthot. Int.
,
33
(
3
), pp.
192
197
.
14.
Presuto
,
M. M.
,
Stickley
,
C. D.
,
Perlsweig
,
K. A.
,
Kimura
,
I. F.
, and
Antoine
,
G. M.
,
2013
, “
Long-Term Outcomes of a Dynamic Ankle-Foot Orthosis on Gait Characteristics of a Service Member With Incomplete Nerve Injury to the Lower Extremity: A Case Report
,”
Mil. Med.
,
178
(
7
), pp.
e870
e875
.
15.
Bregman
,
D. J. J.
,
De Groot
,
V.
,
Van Diggele
,
P.
,
Meulman
,
H.
,
Houdijk
,
H.
, and
Harlaar
,
J.
,
2010
, “
Polypropylene Ankle Foot Orthoses to Overcome Drop-Foot Gait in Central Neurological Patients: A Mechanical and Functional Evaluation
,”
Prosthet. Orthot. Int.
,
34
(
3
), pp.
293
304
.
16.
Kobayashi
,
T.
,
Leung
,
A. K. L.
, and
Hutchins
,
S. W.
,
2011
, “
Techniques to Measure Rigidity of Ankle-Foot Orthosis: A Review
,”
J. Rehabil. Res. Dev.
,
48
(
5
), pp.
565
576
.
17.
Hawkins
,
M. C.
,
2010
, “Experimental and Computational Analysis of an Energy Storage Composite Ankle Foot Orthosis,”
Doctoral thesis
, University of Nevada, Las Vegas, NV.
18.
Miller
,
L. A.
, and
Childress
,
D. S.
,
1997
, “
Analysis of a Vertical Compliance Prosthetic Foot
,”
J. Rehabil. Res. Dev.
,
34
(
1
), pp.
52
57
.
19.
Wach
,
A.
,
2015
, “Mechanical Characterization of Carbon Fiber and Thermoplastic Ankle Foot Orthoses,”
Master's thesis
, Marquette University, Milwaukee, WI.
20.
Kobayashi
,
T.
,
Leung
,
A. L.
,
Akazawa
,
Y.
,
Naito
,
H.
,
Tanaka
,
M.
, and
Hutchins
,
S. W.
,
2010
, “
Design of an Automated Device to Measure Sagittal Plane Stiffness of an Articulated Ankle-Foot Orthosis
,”
Proc. Inst. Mech. Eng.: Part H
,
34
(
4
), pp.
439
448
.
21.
Major
,
R. E.
,
Hewart
,
P. J.
, and
Macdonald
,
A. M.
,
2004
, “
A New Structural Concept in Moulded Fixed Ankle Foot Orthoses and Comparison of the Bending Stiffness of Four Constructions
,”
Prosthet. Orthot. Int.
,
28
(
1
), pp.
44
48
.
22.
Bregman
,
D. J. J.
,
Rozumalski
,
A.
,
Koops
,
D.
,
de Groot
,
V.
,
Schwartz
,
M.
, and
Harlaar
,
J.
,
2009
, “
A New Method for Evaluating Ankle Foot Orthosis Characteristics: BRUCE
,”
Gait Posture
,
30
(
2
), pp.
144
149
.
23.
Kobayashi
,
T.
,
Leung
,
A. K.
, and
Hutchins
,
S. W.
,
2011
, “
Design of a Manual Device to Measure Ankle Joint Stiffness and Range of Motion
,”
Prosthet. Orthot. Int.
,
35
(
4
), pp.
478
481
.
24.
Novacheck
,
T. F.
,
Beattie
,
C.
,
Rozumalski
,
A.
,
Gent
,
G.
, and
Kroll
,
G.
,
2007
, “
Quantifying the Spring-Like Properties of Ankle-Foot Orthoses (AFOs)
,”
J. Prosthet. Orthot.
,
19
(
4
), pp.
98
105
.
25.
Singerman
,
R.
,
Hoy
,
D. J.
, and
Mansour
,
J. M.
,
1999
, “
Design Changes in Ankle-Foot Orthosis Intended to Alter Stiffness Also Alter Orthosis Kinematics
,”
J. Prosthet. Orthot.
,
11
(
3
), pp. 48–55.
26.
Dyer
,
B.
,
Sewell
,
P.
, and
Noroozi
,
S.
,
2013
, “
How Should We Assess the Mechanical Properties of Lower-Limb Prosthesis Technology Used in Elite Sport?—An Initial Investigation
,”
J. Biomed. Sci. Eng.
,
6
(
2
), pp.
116
123
.
You do not currently have access to this content.