Most dynamic simulations are based on inverse dynamics, being the time-dependent physiological nature of the muscle properties rarely considered due to numerical challenges. Since the influence of muscle physiology on the consistency of inverse dynamics simulations remains unclear, the purpose of the present study is to evaluate the computational efficiency and biological validity of four musculotendon models that differ in the simulation of the muscle activation and contraction dynamics. Inverse dynamic analyses are performed using a spatial musculoskeletal model of the upper limb. The muscle force-sharing problem is solved for five repetitions of unloaded and loaded motions of shoulder abduction and shoulder flexion. The performance of the musculotendon models is evaluated by comparing muscle activation predictions with electromyography (EMG) signals, measured synchronously with motion for 11 muscles, and the glenohumeral joint reaction forces estimated numerically with those measured in vivo. The results show similar muscle activations for all muscle models. Overall, high cross-correlations are computed between muscle activations and the EMG signals measured for all movements analyzed, which provides confidence in the results. The glenohumeral joint reaction forces estimated compare well with those measured in vivo, but the influence of the muscle dynamics is found to be negligible. In conclusion, for slow-speed, standard movements of the upper limb, as those studied here, the activation and musculotendon contraction dynamics can be neglected in inverse dynamic analyses without compromising the prediction of muscle and joint reaction forces.

References

References
1.
Blajer
,
W.
,
Czaplicki
,
A.
,
Dziewiecki
,
K.
, and
Mazur
,
Z.
,
2010
, “
Influence of Selected Modeling and Computational Issues on Muscle Force Estimates
,”
Multibody Syst. Dyn.
,
24
(
4
), pp.
473
492
.
2.
De Groote
,
F.
,
Kinney
,
A. L.
,
Rao
,
A. V.
, and
Fregly
,
B. J.
,
2016
, “
Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2922
2936
.
3.
Nikooyan
,
A. A.
,
Veeger
,
H. E. J.
,
Chadwick
,
E. K. J.
,
Praagman
,
M.
, and
Van der Helm
,
F. C. T.
,
2011
, “
Development of a Comprehensive Musculoskeletal Model of the Shoulder and Elbow
,”
Medical Biol. Eng. Comput.
,
49
(
12
), pp.
1425
1435
.
4.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021005
.
5.
Mow
,
V. C.
, and
Huiskes
,
R.
,
2005
,
Basic Orthopaedic Biomechanics and Mechano-Biology
,
3rd ed.
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
.
6.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
7.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
,
2004
, “
Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
,
20
(
4
), pp.
367
395
.
8.
Oliveira
,
A. R.
,
Gonçalves
,
S. B.
,
de Carvalho
,
M.
, and
Silva
,
M. T.
,
2016
, “
Development of a Musculotendon Model Within the Framework of Multibody System Dynamics
,”
Multibody Dynamics. Computational Methods in Applied Sciences
, Vol.
42
,
J.
Font-Llagunes
, ed.,
Springer
, Cham, Switzerland, pp.
213
237
.
9.
Arbib
,
M. A.
,
2002
,
The Handbook of Brain Theory and Neural Networks
,
2nd ed.
,
A Bradford Book
, Cambridge,
MA
.
10.
Chadwick
,
E. K.
,
Blana
,
D.
,
Van den Bogert
,
A. J.
, and
Kirsch
,
R. F.
,
2009
, “
A Real-Time, 3D Musculoskeletal Model for Dynamic Simulation of Arm Movements
,”
IEEE Trans. Biomed. Eng.
,
56
(
4
), pp.
941
948
.
11.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.
12.
Silva
,
M. P. T.
, and
Ambrósio
,
J. A. C.
,
2003
, “
Solution of Redundant Muscle Forces in Human Locomotion With Multibody Dynamics and Optimization Tools
,”
Mech. Based Des. Struct. Mach.
,
31
(
3
), pp.
381
411
.
13.
Winters
,
J. M.
, and
Stark
,
L.
,
1988
, “
Estimated Mechanical Properties of Synergistic Muscles Involved in Movements of a Variety of Human Joints
,”
J. Biomech.
,
21
(
12
), pp.
1027
1041
.
14.
Quental
,
C.
,
Folgado
,
J.
,
Ambrósio
,
J.
, and
Monteiro
,
J.
,
2015
, “
Critical Analysis of Musculoskeletal Modelling Complexity in Multibody Biomechanical Models of the Upper Limb
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
7
), pp.
749
759
.
15.
Seth
,
A.
, and
Pandy
,
M. G.
,
2007
, “
A Neuromusculoskeletal Tracking Method for Estimating Individual Muscle Forces in Human Movement
,”
J. Biomech.
,
40
(
2
), pp.
356
366
.
16.
Dickerson
,
C. R.
,
Chaffin
,
D. B.
, and
Hughes
,
R. E.
,
2007
, “
A Mathematical Musculoskeletal Shoulder Model for Proactive Ergonomic Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
6
), pp.
389
400
.
17.
Lin
,
Y. C.
,
Dorn
,
T. W.
,
Schache
,
A. G.
, and
Pandy
,
M. G.
,
2012
, “
Comparison of Different Methods for Estimating Muscle Forces in Human Movement
,”
Proc. Inst. Mech. Eng. Part H, J. Eng. Med.
,
226
(
2
), pp.
103
112
.
18.
Quental
,
C.
,
Folgado
,
J.
, and
Ambrósio
,
J.
,
2016
, “
A Window Moving Inverse Dynamics Optimization for Biomechanics of Motion
,”
Multibody Syst. Dyn.
,
38
(
2
), pp.
157
171
.
19.
Shourijeh
,
M. S.
,
Mehrabi
,
N.
, and
McPhee
,
J.
,
2017
, “
Forward Static Optimization in Dynamic Simulation of Human Musculoskeletal Systems: A Proof-of-Concept Study
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051005
.
20.
Walter
,
J. P.
,
Kinney
,
A. L.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
, and
Fregly
,
B. J.
,
2014
, “
Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021031
.
21.
Rodrigo
,
S. E.
,
Ambrósio
,
J. A. C.
,
Silva
,
M. P. T.
, and
Penisi
,
O. H.
,
2008
, “
Analysis of Human Gait Based on Multibody Formulations and Optimization Tools
,”
Mech. Based Des. Struct. Mach.
,
36
(
4
), pp.
446
477
.
22.
Ackermann
,
M.
, and
Schiehlen
,
W.
,
2009
, “
Physiological Methods to Solve the Force-Sharing Problem in Biomechanics
,”
Multibody Dynamics: Computational Methods and Applications
,
C. L.
,
Bottasso
, ed.,
Springer
, Dordrecht, The Netherlands, pp.
1
24
.
23.
Quental
,
C.
,
Folgado
,
J.
,
Ambrósio
,
J.
, and
Monteiro
,
J.
,
2012
, “
A Multibody Biomechanical Model of the Upper Limb Including the Shoulder Girdle
,”
Multibody Syst. Dyn.
,
28
(
1–2
), pp.
83
108
.
24.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2000
, “
The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models
,”
Comput. Methods Biomech. Biomed. Eng.
,
3
(
1
), pp.
1
30
.
25.
Romero
,
F.
, and
Alonso
,
F. J.
,
2016
, “
A Comparison Among Different Hill-Type Contraction Dynamics Formulations for Muscle Force Estimation
,”
Mech. Sci.
,
7
(
1
), pp.
19
29
.
26.
Praagman
,
M.
,
Chadwick
,
E. K.
,
Van der Helm
,
F. C.
, and
Veeger
,
H. E.
,
2006
, “
The Relationship Between Two Different Mechanical Cost Functions and Muscle Oxygen Consumption
,”
J. Biomech.
,
39
(
4
), pp.
758
765
.
27.
Wu
,
G.
,
Van der Helm
,
F. C.
,
Veeger
,
H. E.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.
28.
Shaheen
,
A. F.
,
Alexander
,
C. M.
, and
Bull
,
A. M.
,
2011
, “
Effects of Attachment Position and Shoulder Orientation During Calibration on the Accuracy of the Acromial Tracker
,”
J. Biomech.
,
44
(
7
), pp.
1410
1413
.
29.
Cereatti
,
A.
,
Rosso
,
C.
,
Nazarian
,
A.
,
DeAngelis
,
J. P.
,
Ramappa
,
A. J.
, and
Croce
,
U. D.
,
2015
, “
Scapular Motion Tracking Using Acromion Skin Marker Cluster: In Vitro Accuracy Assessment
,”
J. Medical Biol. Eng.
,
35
(
1
), pp.
94
103
.
30.
Hermens
,
H. J.
,
Freriks
,
B.
,
Merletti
,
R.
,
Hagg
,
G. G.
,
Stegeman
,
D.
,
Blok
,
J.
,
Rau
,
G.
, and
Disselhorst-Klug
,
C.
,
1999
, “
European Recommendations for Surface Electromyography, Results of the SENIAM Project
,” Roessingh Research and Development, Enschede, The Netherlands.
31.
Konrad
,
P.
,
2005
,
The ABC of EMG: A Practical Introduction to Kinesiological Electromyography
,
Noraxon
,
Scottsdale, AZ
.
32.
Wachter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Programming
,
106
(
1
), pp.
25
57
.
33.
Gaspar
,
M.
,
Welke
,
B.
,
Seehaus
,
F.
,
Hurschler
,
C.
, and
Schwarze
,
M.
,
2017
, “
Dynamic Time Warping Compared to Established Methods for Validation of Musculoskeletal Models
,”
J. Biomech.
,
55
, pp.
156
161
.
34.
Wren
,
T. A.
,
Do
,
K. P.
,
Rethlefsen
,
S. A.
, and
Healy
,
B.
,
2006
, “
Cross-Correlation as a Method for Comparing Dynamic Electromyography Signals During Gait
,”
J. Biomech.
,
39
(
14
), pp.
2714
2718
.
35.
Nikooyan
,
A. A.
,
Veeger
,
H. E.
,
Westerhoff
,
P.
,
Graichen
,
F.
,
Bergmann
,
G.
, and
Van der Helm
,
F. C.
,
2010
, “
Validation of the Delft Shoulder and Elbow Model Using In-Vivo Glenohumeral Joint Contact Forces
,”
J. Biomech.
,
43
(
15
), pp.
3007
3014
.
36.
De Groote
,
Pipeleers
,
G.
,
Jonkers
,
I.
,
Demeulenaere
,
B.
,
Patten
,
C.
,
Swevers
,
J.
, and
De
,
Schutter
,
J.
,
2009
, “
A Physiology Based Inverse Dynamic Analysis of Human Gait: Potential and Perspectives
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
5
), pp.
563
574
.
37.
Bayer
,
A.
,
Schmitt
,
S.
,
Gunther
,
M.
, and
Haeufle
,
D. F. B.
,
2017
, “
The Influence of Biophysical Muscle Properties on Simulating Fast Human Arm Movements
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
8
), pp.
803
821
.
38.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Static and Dynamic Optimization Solutions for Gait are Practically Equivalent
,”
J. Biomech.
,
34
(
2
), pp.
153
161
.
39.
Bergmann
,
G.
,
2008
, “
Orthoload: Loading of Orthopedic Implants
,” Julius Wolff Institute, Berlin, accessed Mar. 29, 2018, http://www.OrthoLoad.com
40.
Nikooyan
,
A. A.
,
Veeger
,
H. E.
,
Westerhoff
,
P.
,
Bolsterlee
,
B.
,
Graichen
,
F.
,
Bergmann
,
G.
, and
Van der Helm
,
F. C.
,
2012
, “
An EMG-Driven Musculoskeletal Model of the Shoulder
,”
Human Mov. Sci.
,
31
(
2
), pp.
429
447
.
You do not currently have access to this content.