A subset of temporomandibular joint (TMJ) disorders is attributed to joint degeneration. The pig has been considered the preferred in vivo model for the evaluation of potential therapies for TMJ disorders, and practical considerations such as cost and husbandry issues have favored the use of young, skeletally immature animals. However, the effect of growth on the biochemical and biomechanical properties of the TMJ disk and articulating cartilage has not been examined. The present study investigates the effect of age on the biochemical and biomechanical properties of healthy porcine TMJs at 3, 6, and 9 months of age. DNA, hydroxyproline, and glycosaminoglycan (GAG) content were determined and the disks and condyles were tested in uniaxial unconfined stress relaxation compression from 10% to 30% strain. TMJ disks were further assessed with a tensile test to failure technique, which included the ability to test multiple samples from the same region of an individual disk to minimize the intraspecimen variation. No differences in biochemical properties for the disk or compressive properties at 30% stress relaxation in the disk and condylar cartilage were found. In tension, no differences were observed for peak stress and tensile modulus. The collagen content of the condyle was higher at 9 months than 3 months (p < 0.05), and the GAG content was higher at 9 months than 6 months (p < 0.05). There was a trend of increased compressive instantaneous modulus with age. As such, age-matched controls for growing pigs are probably appropriate for most parameters measured.

References

References
1.
Beek
,
M.
,
Koolstra
,
J. H.
,
van Ruijven
,
L. J.
, and
van Eijden
,
T. M.
,
2000
, “
Three-Dimensional Finite Element Analysis of the Human Temporomandibular Joint Disc
,”
J. Biomech.
,
33
(
3
), pp.
307
316
.
2.
Donzelli
,
P. S.
,
Gallo
,
L. M.
,
Spilker
,
R. L.
, and
Palla
,
S.
,
2004
, “
Biphasic Finite Element Simulation of the TMJ Disc From In Vivo Kinematic and Geometric Measurements
,”
J. Biomech.
,
37
(
11
), pp.
1787
1791
.
3.
Tanaka
,
E.
,
del Pozo
,
R.
,
Tanaka
,
M.
,
Asai
,
D.
,
Hirose
,
M.
,
Iwabe
,
T.
, and
Tanne
,
K.
,
2004
, “
Three-Dimensional Finite Element Analysis of Human Temporomandibular Joint With and Without Disc Displacement During Jaw Opening
,”
Med. Eng. Phys.
,
26
(
6
), pp.
503
511
.
4.
Tanaka
,
E.
, and
van Eijden
,
T.
,
2003
, “
Biomechanical Behavior of the Temporomandibular Joint Disc
,”
Crit. Rev. Oral Biol. Med.
,
14
(
2
), pp.
138
150
.
5.
Estabrooks
,
L. N.
,
Fairbanks
,
C. E.
,
Collett
,
R. J.
, and
Miller
,
L.
,
1990
, “
A Retrospective Evaluation of 301 TMJ Proplast-Teflon Implants
,”
Oral Surg. Oral Med. Oral Pathol.
,
70
(
3
), pp.
381
386
.
6.
Henry
,
C. H.
, and
Wolford
,
L. M.
,
1993
, “
Treatment Outcomes for Temporomandibular Joint Reconstruction After Proplast-Teflon Implant Failure
,”
J. Oral Maxillofac. Surg.
,
51
(
4
), pp.
352
360
.
7.
Brown
,
B. N.
,
Chung
,
W. L.
,
Almarza
,
A. J.
,
Pavlick
,
M. D.
,
Reppas
,
S. N.
,
Ochs
,
M. W.
,
Russell
,
A. J.
, and
Badylak
,
S. F.
,
2012
, “
Inductive, Scaffold-Based, Regenerative Medicine Approach to Reconstruction of the Temporomandibular Joint Disk
,”
J. Oral Maxillofac. Surg.
,
70
(
11
), pp.
2656
2668
.
8.
Brown
,
B. N.
,
Chung
,
W. L.
,
Pavlick
,
M.
,
Reppas
,
S.
,
Ochs
,
M. W.
,
Russell
,
A. J.
, and
Badylak
,
S. F.
,
2011
, “
Extracellular Matrix as an Inductive Template for Temporomandibular Joint Meniscus Reconstruction: A Pilot Study
,”
J. Oral Maxillofac. Surg.
,
69
(
12
), pp.
e488
e505
.
9.
Puelacher
,
W. C.
,
Wisser
,
J.
,
Vacanti
,
C. A.
,
Ferraro
,
N. F.
,
Jaramillo
,
D.
, and
Vacanti
,
J. P.
,
1994
, “
Temporomandibular Joint Disc Replacement Made by Tissue-Engineered Growth of Cartilage
,”
J. Oral Maxillofac. Surg.
,
52
(
11
), pp.
1172
1178
.
10.
Tarafder
,
S.
,
Koch
,
A.
,
Jun
,
Y.
,
Chou
,
C.
,
Awadallah
,
M. R.
, and
Lee
,
C. H.
,
2016
, “
Micro-Precise Spatiotemporal Delivery System Embedded in 3D Printing for Complex Tissue Regeneration
,”
Biofabrication
,
8
(
2
), p.
025003
.
11.
Wu
,
Y.
,
Gong
,
Z.
,
Li
,
J.
,
Meng
,
Q.
,
Fang
,
W.
, and
Long
,
X.
,
2014
, “
The Pilot Study of Fibrin With Temporomandibular Joint Derived Synovial Stem Cells in Repairing TMJ Disc Perforation
,”
Biomed. Res. Int.
,
2014
, p.
454021
.
12.
Hagandora
,
C. K.
,
Tudares
,
M. A.
, and
Almarza
,
A. J.
,
2012
, “
The Effect of Magnesium Ion Concentration on the Fibrocartilage Regeneration Potential of Goat Costal Chondrocytes
,”
Ann. Biomed. Eng.
,
40
(
3
), pp.
688
696
.
13.
Almarza
,
A. J.
, and
Athanasiou
,
K. A.
,
2005
, “
Effects of Initial Cell Seeding Density for the Tissue Engineering of the Temporomandibular Joint Disc
,”
Ann. Biomed. Eng.
,
33
(
7
), pp.
943
950
.
14.
Almarza
,
A. J.
, and
Athanasiou
,
K. A.
,
2006
, “
Evaluation of Three Growth Factors in Combinations of Two for Temporomandibular Joint Disc Tissue Engineering
,”
Arch. Oral Biol.
,
51
(
3
), pp.
215
221
.
15.
Hagandora
,
C. K.
,
Gao
,
J.
,
Wang
,
Y.
, and
Almarza
,
A. J.
,
2013
, “
Poly (Glycerol Sebacate): A Novel Scaffold Material for Temporomandibular Joint Disc Engineering
,”
Tissue Eng., Part A
,
19
(
5–6
), pp.
729
737
.
16.
Almarza
,
A. J.
, and
Athanasiou
,
K. A.
,
2004
, “
Seeding Techniques and Scaffolding Choice for Tissue Engineering of the Temporomandibular Joint Disk
,”
Tissue Eng.
,
10
(
11–12
), pp.
1787
1795
.
17.
Reiland
,
S.
,
1978
, “
Growth and Skeletal Development of the Pig
,”
Acta Radiol. Suppl.
,
358
, pp.
15
22
.
18.
Almarza
,
A. J.
,
Bean
,
A. C.
,
Baggett
,
L. S.
, and
Athanasiou
,
K. A.
,
2006
, “
Biochemical Analysis of the Porcine Temporomandibular Joint Disc
,”
Br. J. Oral Maxillofac. Surg.
,
44
(
2
), pp.
124
128
.
19.
Beatty
,
M. W.
,
Bruno
,
M. J.
,
Iwasaki
,
L. R.
, and
Nickel
,
J. C.
,
2001
, “
Strain Rate Dependent Orthotropic Properties of Pristine and Impulsively Loaded Porcine Temporomandibular Joint Disk
,”
J. Biomed. Mater. Res.
,
57
(
1
), pp.
25
34
.
20.
Chladek
,
W.
, and
Czerwik
,
I.
,
2008
, “
Mechanical Properties of Temporomandibular Joint Disc on the Basis of Porcine Preparation Investigations
,”
Acta Bioeng. Biomech.
,
10
(
4
), pp.
15
20
.
21.
Detamore
,
M. S.
, and
Athanasiou
,
K. A.
,
2003
, “
Tensile Properties of the Porcine Temporomandibular Joint Disc
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
558
565
.
22.
Detamore
,
M. S.
,
Orfanos
,
J. G.
,
Almarza
,
A. J.
,
French
,
M. M.
,
Wong
,
M. E.
, and
Athanasiou
,
K. A.
,
2005
, “
Quantitative Analysis and Comparative Regional Investigation of the Extracellular Matrix of the Porcine Temporomandibular Joint Disc
,”
Matrix Biol.
,
24
(
1
), pp.
45
57
.
23.
Kalpakci
,
K. N.
,
Willard
,
V. P.
,
Wong
,
M. E.
, and
Athanasiou
,
K. A.
,
2011
, “
An Interspecies Comparison of the Temporomandibular Joint Disc
,”
J. Dent. Res.
,
90
(
2
), pp.
193
198
.
24.
Kang
,
H.
,
Bao
,
G.
,
Dong
,
Y.
,
Yi
,
X.
,
Chao
,
Y.
, and
Chen
,
M.
,
2000
, “
Tensile Mechanics of Mandibular Condylar Cartilage
,”
Hua Xi Kou Qiang Yi Xue Za Zhi
,
18
(
2
), pp.
85
87
.
25.
Kim
,
K. W.
,
Wong
,
M. E.
,
Helfrick
,
J. F.
,
Thomas
,
J. B.
, and
Athanasiou
,
K. A.
,
2003
, “
Biomechanical Tissue Characterization of the Superior Joint Space of the Porcine Temporomandibular Joint
,”
Ann. Biomed. Eng.
,
31
(
8
), pp.
924
930
.
26.
Koolstra
,
J. H.
,
Tanaka
,
E.
, and
Van Eijden
,
T. M.
,
2007
, “
Viscoelastic Material Model for the Temporomandibular Joint Disc Derived From Dynamic Shear Tests or Strain-Relaxation Tests
,”
J. Biomech.
,
40
(
10
), pp.
2330
2334
.
27.
Kuboki
,
T.
,
Shinoda
,
M.
,
Orsini
,
M. G.
, and
Yamashita
,
A.
,
1997
, “
Viscoelastic Properties of the Pig Temporomandibular Joint Articular Soft Tissues of the Condyle and Disc
,”
J. Dent. Res.
,
76
(
11
), pp.
1760
1769
.
28.
Lamela
,
M. J.
,
Fernandez
,
P.
,
Ramos
,
A.
,
Fernandez-Canteli
,
A.
, and
Tanaka
,
E.
,
2013
, “
Dynamic Compressive Properties of Articular Cartilages in the Porcine Temporomandibular Joint
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
62
70
.
29.
Lumpkins
,
S. B.
, and
McFetridge
,
P. S.
,
2009
, “
Regional Variations in the Viscoelastic Compressive Properties of the Temporomandibular Joint Disc and Implications Toward Tissue Engineering
,”
J. Biomed. Mater. Res. A
,
90
(
3
), pp.
784
791
.
30.
Matuska
,
A. M.
,
Muller
,
S.
,
Dolwick
,
M. F.
, and
McFetridge
,
P. S.
,
2016
, “
Biomechanical and Biochemical Outcomes of Porcine Temporomandibular Joint Disc Deformation
,”
Arch. Oral Biol.
,
64
, pp.
72
79
.
31.
Murphy
,
M. K.
,
Arzi
,
B.
,
Hu
,
J. C.
, and
Athanasiou
,
K. A.
,
2013
, “
Tensile Characterization of Porcine Temporomandibular Joint Disc Attachments
,”
J. Dent. Res.
,
92
(
8
), pp.
753
758
.
32.
Ruggiero
,
L.
,
Zimmerman
,
B. K.
,
Park
,
M.
,
Han
,
L.
,
Wang
,
L.
,
Burris
,
D. L.
, and
Lu
,
X. L.
,
2015
, “
Roles of the Fibrous Superficial Zone in the Mechanical Behavior of TMJ Condylar Cartilage
,”
Ann. Biomed. Eng.
,
43
(
11
), pp.
2652
2662
.
33.
Singh
,
M.
, and
Detamore
,
M. S.
,
2008
, “
Tensile Properties of the Mandibular Condylar Cartilage
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
011009
.
34.
Singh
,
M.
, and
Detamore
,
M. S.
,
2009
, “
Stress Relaxation Behavior of Mandibular Condylar Cartilage Under High-Strain Compression
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061008
.
35.
Snider
,
G. R.
,
Lomakin
,
J.
,
Singh
,
M.
,
Gehrke
,
S. H.
, and
Detamore
,
M. S.
,
2008
, “
Regional Dynamic Tensile Properties of the TMJ Disc
,”
J. Dent. Res.
,
87
(
11
), pp.
1053
1057
.
36.
Tanaka
,
E.
,
Hanaoka
,
K.
,
van Eijden
,
T.
,
Tanaka
,
M.
,
Watanabe
,
M.
,
Nishi
,
M.
,
Kawai
,
N.
,
Murata
,
H.
,
Hamada
,
T.
, and
Tanne
,
K.
,
2003
, “
Dynamic Shear Properties of the Temporomandibular Joint Disc
,”
J. Dent. Res.
,
82
(
3
), pp.
228
231
.
37.
Tanaka
,
E.
,
Yamano
,
E.
,
Dalla-Bona
,
D. A.
,
Watanabe
,
M.
,
Inubushi
,
T.
,
Shirakura
,
M.
,
Sano
,
R.
,
Takahashi
,
K.
,
van Eijden
,
T.
, and
Tanne
,
K.
,
2006
, “
Dynamic Compressive Properties of the Mandibular Condylar Cartilage
,”
J. Dent. Res.
,
85
(
6
), pp.
571
575
.
38.
Willard
,
V. P.
,
Kalpakci
,
K. N.
,
Reimer
,
A. J.
, and
Athanasiou
,
K. A.
,
2012
, “
The Regional Contribution of Glycosaminoglycans to Temporomandibular Joint Disc Compressive Properties
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011011
.
39.
Hagandora
,
C. K.
,
Chase
,
T. W.
, and
Almarza
,
A. J.
,
2011
, “
A Comparison of the Mechanical Properties of the Goat Temporomandibular Joint Disc to the Mandibular Condylar Cartilage in Unconfined Compression
,”
J. Dent. Biomech.
,
2011
(
1
), p.
212385
.
40.
Fazaeli
,
S.
,
Ghazanfari
,
S.
,
Everts
,
V.
,
Smit
,
T. H.
, and
Koolstra
,
J. H.
,
2016
, “
The Contribution of Collagen Fibers to the Mechanical Compressive Properties of the Temporomandibular Joint Disc
,”
Osteoarthritis Cartilage
,
24
(
7
), pp.
1292
1301
.
You do not currently have access to this content.