Static frontal plane tibiofemoral alignment is an important factor in dynamic knee alignment and knee adduction moments (KAMs). However, little is known about the relationship between alignment and compartment contact forces or muscle control strategies. The purpose of this study was to estimate medial (MCF) and lateral (LCF) compartment knee joint contact forces and muscle forces during stair ascent using a musculoskeletal model implementing subject-specific knee alignments. Kinematic and kinetic data from 20 healthy individuals with radiographically confirmed varus or valgus knee alignments were simulated using alignment specific models to predict MCFs and LCFs. Muscle forces were determined using static optimization. Independent samples t-tests compared contact and muscle forces between groups during weight acceptance and during pushoff. The varus group exhibited increased weight acceptance peak MCFs, while the valgus group exhibited increased pushoff peak LCFs. The varus group utilized increased vasti muscle forces during weight acceptance and adductor forces during pushoff. The valgus group utilized increased abductor forces during pushoff. The alignment-dependent contact forces provide evidence of the significance of frontal plane knee alignment in healthy individuals, which may be important in considering future knee joint health. The differing muscle control strategies between alignments detail-specific neuromuscular responses to control frontal plane knee loads.

References

References
1.
Barrios
,
J. A.
, and
Strotman
,
D. E.
,
2014
, “
A Sex Comparison of Ambulatory Mechanics Relevant to Osteoarthritis in Individuals With and Without Asymptomatic Varus Knee Alignment
,”
J. Appl. Biomech.
,
30
(
5
), pp.
632
636
.
2.
Bennett
,
H. J.
,
Zhang
,
S.
,
Shen
,
G.
,
Weinhandl
,
J. T.
,
Paquette
,
M. R.
,
Reinbolt
,
J. A.
, and
Coe
,
D. P.
,
2017
, “
Effects of Toe-In and Wider Step Width in Stair Ascent With Different Knee Alignments
,”
Med. Sci. Sports Exerc.
,
49
(
3
), pp.
563
572
.
3.
Foroughi
,
N.
,
Smith
,
R. M.
,
Lange
,
A. K.
,
Baker
,
M. K.
,
Fiatarone Singh
,
M. A.
, and
Vanwanseele
,
B.
,
2010
, “
Dynamic Alignment and Its Association With Knee Adduction Moment in Medial Knee Osteoarthritis
,”
Knee
,
17
(
3
), pp.
210
216
.
4.
Turcot
,
K.
,
Armand
,
S.
,
Lubbeke
,
A.
,
Fritschy
,
D.
,
Hoffmeyer
,
P.
, and
Suva
,
D.
,
2013
, “
Does Knee Alignment Influence Gait in Patients With Severe Knee Osteoarthritis?
,”
Clin. Biomech.
,
28
(
1
), pp.
34
39
.
5.
Halder
,
A.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Heinlein
,
B.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2012
, “
Influence of Limb Alignment on Mediolateral Loading in Total Knee Replacement: In Vivo Measurements in Five Patients
,”
J. Bone Jt. Surg. Am.
,
94
(
11
), pp.
1023
1029
.
6.
Bellemans
,
J.
,
Colyn
,
W.
,
Vandenneucker
,
H.
, and
Victor
,
J.
,
2012
, “
The Chitranjan Ranawat Award: Is Neutral Mechanical Alignment Normal for All Patients? the Concept of Constitutional Varus
,”
Clin. Orthop. Relat. Res.
,
470
(
1
), pp.
45
53
.
7.
Mundermann
,
A.
,
Dyrby
,
C. O.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Andriacchi
,
T. P.
,
2008
, “
In Vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement
,”
J. Orthop. Res.
,
26
(9), pp.
1167
1172
.
8.
Sharma
,
L.
,
Thonar
,
E. J.
,
Sum
,
J. A.
,
Lenz
,
M. E.
,
Dunlop
,
D. D.
,
Schnitzer
,
T. J.
,
Kirwan-Mellis
,
G.
, and
Andriacchi
,
T. P.
,
1998
, “
Knee Adduction Moment, Serum Hyaluronan Level, and Disease Severity in Medial Tibiofemoral Osteoarthritis
,”
Arthritis Rheumatol.
,
41
(
7
), pp.
1233
1240
.
9.
Trepczynski
,
A.
,
Kutzner
,
I.
,
Bergmann
,
G.
,
Taylor
,
W. R.
, and
Heller
,
M. O.
,
2014
, “
Modulation of the Relationship Between External Knee Adduction Moments and Medial Joint Contact Forces Across Subjects and Activities
,”
Arthritis Rheumatol.
,
66
(
5
), pp.
1218
1227
.
10.
Walter
,
J. P.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Fregly
,
B. J.
,
2010
, “
Decreased Knee Adduction Moment Does Not Guarantee Decreased Medial Contact Force During Gait
,”
J. Orthop. Res.
,
28
(
10
), pp.
1348
1354
.
11.
Zhao
,
D.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Fregly
,
B. J.
,
2007
, “
In Vivo Medial and Lateral Tibial Loads During Dynamic and High Flexion Activities
,”
J. Orthop. Res.
,
25
(
5
), pp.
593
602
.
12.
Zhao
,
D.
,
Banks
,
S. A.
,
Mitchell
,
K. H.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Frely
,
B. J.
,
2007
, “
Correlation Between the Knee Adduction Torque and Medial Contact Force for a Variety of Gait Patterns
,”
J. Orthop. Res.
,
25
(
6
), pp.
789
797
.
13.
Thelen
,
D. G.
,
Chumanov
,
E. S.
,
Sherry
,
M. A.
, and
Heiderscheit
,
B. C.
,
2006
, “
Neuromusculoskeletal Models Provide Insights Into the Mechanisms and Rehabilitation of Hamstring Strains
,”
Exercise Sports Sci. Rev.
,
34
(
3
), pp.
135
141
.
14.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2002
, “
Biomechanics and Muscle Coordination of Human Walking. Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations
,”
Gait Posture
,
16
(
3
), pp.
215
232
.
15.
Lerner
,
Z. F.
,
DeMers
,
M. S.
,
Delp
,
S. L.
, and
Browning
,
R. C.
,
2015
, “
How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces
,”
J. Biomech.
,
48
(
4
), pp.
644
650
.
16.
Thelen
,
D. G.
,
Won Choi
,
K.
, and
Schmitz
,
A. M.
,
2014
, “
Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021033
.
17.
Winby
,
C. R.
,
Lloyd
,
D. G.
,
Besier
,
T. F.
, and
Kirk
,
T. B.
,
2009
, “
Muscle and External Load Contribution to Knee Joint Contact Loads During Normal Gait
,”
J. Biomech.
,
42
(
14
), pp.
2294
2300
.
18.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.
19.
Heller
,
M. O.
,
Taylor
,
W. R.
,
Perka
,
C.
, and
Duda
,
G. N.
,
2003
, “
The Influence of Alignment on the Musculo-Skeletal Loading Conditions at the Knee
,”
Langenbecks Arch. Surg.
,
388
(
5
), pp.
291
297
.
20.
Kumar
,
D.
,
Rudolph
,
K. S.
, and
Manal
,
K. T.
,
2012
, “
EMG-Driven Modeling Approach to Muscle Force and Joint Load Estimations: Case Study in Knee Osteoarthritis
,”
J. Orthop. Res.
,
30
(
3
), pp.
377
383
.
21.
Tetsworth
,
K.
, and
Paley
,
D.
,
1994
, “
Malalignment and Degenerative Arthropathy
,”
Orthop. Clin. North Am.
,
25
(
3
), pp.
367
377
.
22.
Ainsworth
,
B. E.
,
Haskell
,
W. L.
,
Hermann
,
S. D.
,
Meckes
,
N.
,
Bassett
,
D. R. J.
,
Tudor-Locke
,
C.
,
Greer
,
J. L.
,
Vezina
,
J.
,
Whitt-Glover
,
M. C.
, and
Leon
,
A. S.
,
2011
, “
2011 Compendium of Physical Acitivites: A Second Update of Codes and MET Values
,”
Med. Sci. Sports Exercise
,
43
(
8
), pp.
1575
1581
.
23.
Nadeau
,
S.
,
McFadyen
,
B. J.
, and
Malouin
,
F.
,
2003
, “
Frontal and Sagittal Plane Analyses of the Stair Climbing Task in Healthy Adults Aged Over 40 Years: What are the Challenges Compared to Level Walking?
,”
Clin. Biomech.
,
18
(
10
), pp.
950
959
.
24.
Guo
,
M.
,
Axe
,
M. J.
, and
Manal
,
K.
,
2007
, “
The Influence of Foot Progression Angle on the Knee Adduction Moment During Walking and Stair Climbing in Pain Free Individuals With Knee Osteoarthritis
,”
Gait Posture
,
26
(
3
), pp.
436
441
.
25.
Reiner
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
,
2002
, “
Stair Ascent and Descent at Different Inclinations
,”
Gait Posture
,
15
(
1
), pp.
32
44
.
26.
Lloyd
,
D. G.
, and
Buchanan
,
T. S.
,
2001
, “
Strategies of Muscular Support of Varus and Valgus Isometric Loads at the Human Knee
,”
J. Biomech.
,
34
(
10
), pp.
1257
1267
.
27.
Zhang
,
L.
, and
Wang
,
G.
,
2001
, “
Dynamic and Static Control of the Human Knee Joint in Abduction-Adduction
,”
J. Biomech.
,
34
(
9
), pp.
1107
1115
.
28.
Bennett
,
H. J.
,
Shen
,
G.
,
Weinhandl
,
J. T.
, and
Zhang
,
S.
,
2016
, “
Validation of the Greater Trochanter Method With Radiographic Measurements of Frontal Plane Hip Joint Centers and Knee Mechanical Axis Angles and Two Other Hip Joint Center Methods
,”
J. Biomech.
,
49
(
13
), pp.
3047
3051
.
29.
Sharma
,
L.
,
Song
,
J.
,
Felson
,
D. T.
,
Cahue
,
S.
,
Shamiyeh
,
E.
, and
Dunlop
,
D. D.
,
2001
, “
The Role of Knee Alignment in Disease Progression and Functional Decline in Knee Osteoarthritis
,”
JAMA
,
286
(
2
), pp.
188
195
.
30.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.
31.
Paquette
,
M. R.
,
Klipple
,
G.
, and
Zhang
,
S.
,
2015
, “
Greater Step Widths Reduce Internal Knee Abduction Moments in Medial Compartment Knee Osteoarthritis Patients During Stair Ascent
,”
J. Appl. Biomech.
,
31
(
4
), pp.
229
236
.
32.
Weinhandl
,
J. T.
,
Earl-Boehm
,
J. E.
,
Ebersole
,
K. T.
,
Huddleston
,
W. E.
,
Armstrong
,
B. S.
, and
O'Connor
,
K. M.
,
2013
, “
Anticipatory Effects on Anterior Cruciate Ligament Loading During Sidestep Cutting
,”
Clin. Biomech.
,
28
(
6
), pp.
655
663
.
33.
Steele
,
K. M.
,
Demers
,
M. S.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2012
, “
Compressive Tibiofemoral Force During Crouch Gait
,”
Gait Posture
,
35
(
4
), pp.
556
560
.
34.
Rasnick
,
R.
,
Standifird
,
T.
,
Reinbolt
,
J. A.
,
Cates
,
H. E.
, and
Zhang
,
S.
,
2016
, “
Knee Joint Loads and Surrounding Muscle Forces During Stair Ascent in Patients With Total Knee Replacement
,”
PloS One
,
11
(
6
), p.
e0156282
.
35.
Adouni
,
M.
, and
Shirazi-Adl
,
A.
,
2014
, “
Partitioning of Knee Joint Internal Forces in Gait is Dictated by the Knee Adduction Angle and Not by the Knee Adduction Moment
,”
J. Biomech.
,
47
(
7
), pp.
1696
1703
.
36.
Hunt
,
M. A.
,
Birmingham
,
T. B.
,
Giffin
,
J. R.
, and
Jenkyn
,
T. R.
,
2006
, “
Associations Among Knee Adduction Moment, Frontal Plane Ground Reaction Force, and Lever Arm During Walking in Patients With Knee Osteoarthritis
,”
J. Biomech.
,
39
(
12
), pp.
2213
2220
.
37.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.
38.
Brouwer
,
G. M.
,
van Tol
,
A. W.
,
Bergink
,
A. P.
,
Belo
,
J. N.
,
Bernsen
,
R. M. D.
,
Reijman
,
M.
,
Pols
,
H. A. P.
, and
Bierma-Zeinstra
,
S. M. A.
,
2007
, “
Association Between Valgus and Varus Alignment and the Development and Progression of Radiographic Osteoarthritis of the Knee
,”
Arthritis Rheumatol.
,
56
(4), pp.
1204
1211
.
39.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Static and Dynamic Optimization Solutions for Gait are Practically Equivalent
,”
J. Biomech.
,
34
(
2
), pp.
153
161
.
40.
McFadyen
,
B. J.
, and
Winter
,
D. A.
,
1988
, “
An Integrated Biomechanical Analysis of Normal Stair Ascent and Descent
,”
J. Biomech.
,
21
(
9
), pp.
733
744
.
You do not currently have access to this content.