Although uniaxial tensile testing is commonly used to evaluate failure properties of vascular tissue, there is no established protocol for specimen shape or gripping method. Large percentages of specimens are reported to fail near the clamp and can potentially confound the studies, or, if discarded will result in sample waste. The objective of this study is to identify sample geometry and clamping conditions that can achieve consistent failure in the midregion of small arterial specimens, even for vessels from older individuals. Failure location was assessed in 17 dogbone specimens from human cerebral and sheep carotid arteries using soft inserts. For comparison with commonly used protocols, an additional 22 rectangular samples were tested using either sandpaper or foam tape inserts. Midsample failure was achieved in 94% of the dogbone specimens, while only 14% of the rectangular samples failed in the midregion, the other 86% failing close to the clamps. Additionally, we found midregion failure was more likely to be abrupt, caused by cracking or necking. In contrast, clamp failure was more likely to be gradual and included a delamination mode not seen in midregion failure. Hence, this work provides an approach that can be used to obtain consistent midspecimen failure, avoiding confounding clamp-related artifacts. Furthermore, with consistent midregion failure, studies can be designed to image the failure process in small vascular samples providing valuable quantitative information about changes to collagen and elastin structure during the failure process.

References

References
1.
Adams
,
H. P.
,
Butler
,
M. J.
,
Biller
,
J.
, and
Toffol
,
G. J.
,
1986
, “
Nonhemorrhagic Cerebral Infarction in Young Adults
,”
Arch. Neurol.
,
43
(
8
), pp.
793
796
.
2.
Broderick
,
J. P.
,
Brott
,
T.
,
Tomsick
,
T.
,
Miller
,
R.
, and
Huster
,
G.
,
1993
, “
Intracerebral Hemorrhage More Than Twice as Common as Subarachnoid Hemorrhage
,”
J. Neurosurg.
,
78
(
2
), pp.
188
191
.
3.
Hart
,
R.
, and
Easton
,
J.
,
1985
, “
Dissections
,”
Stroke
,
16
(
6
), pp.
925
927
.
4.
Kelly
,
P. J.
,
Stein
,
J.
,
Shafqat
,
S.
,
Eskey
,
C.
,
Doherty
,
D.
,
Chang
,
Y.
,
Kurina
,
A.
, and
Furie
,
K. L.
,
2001
, “
Functional Recovery After Rehabilitation for Cerebellar Stroke
,”
Stroke
,
32
(
2
), pp.
530
534
.
5.
Upchurch
,
G. R.
, and
Schaub
,
T. A.
,
2006
, “
Abdominal Aortic Aneurysm
,”
Am. Fam. Physician
,
73
(
7
), pp.
1198
1206
.
6.
Shaw
,
C.-M.
, and
Alvord
,
E.
,
1972
, “
Injury of the Basilar Artery Associated With Closed Head Trauma
,”
J. Neurol. Neurosurg. Psychiatry
,
35
(
2
), pp.
247
257
.
7.
Claes
,
E.
,
Atienza
,
J. M.
,
Guinea
,
G. V.
,
Rojo
,
F. J.
,
Bernal
,
J. M.
,
Revuelta
,
J. M.
, and
Elices
,
M.
,
2010
, “
Mechanical Properties of Human Coronary Arteries
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology
(
EMBC
), Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
3792
3795
.
8.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Heart Circ. Physiol.
,
289
(
5
), pp.
H2048
H2058
.
9.
Pichamuthu
,
J. E.
,
Phillippi
,
J. A.
,
Cleary
,
D. A.
,
Chew
,
D. W.
,
Hempel
,
J.
,
Vorp
,
D. A.
, and
Gleason
,
T. G.
,
2013
, “
Differential Tensile Strength and Collagen Composition in Ascending Aortic Aneurysms by Aortic Valve Phenotype
,”
Ann. Thorac. Surg.
,
96
(
6
), pp.
2147
2154
.
10.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
1996
, “
Ex Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
,
24
(
5
), pp.
573
582
.
11.
Raghavan
,
M. L.
,
Hanaoka
,
M. M.
,
Kratzberg
,
J. A.
,
Higuchi
,
M. D. L.
, and
da Silva
,
E. S.
,
2011
, “
Biomechanical Failure Properties and Microstructural Content of Ruptured and Unruptured Abdominal Aortic Aneurysms
,”
J. Biomech.
,
44
(
13
), pp.
2501
2507
.
12.
Robertson
,
A. M.
,
Duan
,
X.
,
Aziz
,
K. M.
,
Hill
,
M. R.
,
Watkins
,
S. C.
, and
Cebral
,
J. R.
,
2015
, “
Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms
,”
Ann. Biomed. Eng.
,
43
(
7
), pp.
1502
1515
.
13.
Teng
,
Z.
,
Tang
,
D.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Hoffman
,
A. H.
,
2009
, “
An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human Atherosclerotic Carotid Arteries in Circumferential and Axial Directions
,”
J. Biomech.
,
42
(
15
), pp.
2535
2539
.
14.
Vorp
,
D. A.
,
Schiro
,
B. J.
,
Ehrlich
,
M. P.
,
Juvonen
,
T. S.
,
Ergin
,
M. A.
, and
Griffith
,
B. P.
,
2003
, “
Effect of Aneurysm on the Tensile Strength and Biomechanical Behavior of the Ascending Thoracic Aorta
,”
Ann. Thorac. Surg.
,
75
(
4
), pp.
1210
1214
.
15.
Ferrara
,
A.
,
Morganti
,
S.
,
Totaro
,
P.
,
Mazzola
,
A.
, and
Auricchio
,
F.
,
2016
, “
Human Dilated Ascending Aorta: Mechanical Characterization Via Uniaxial Tensile Tests
,”
J. Mech. Behav. Biomed. Mater.
,
53
, pp.
257
271
.
16.
Forsell
,
C.
,
Swedenborg
,
J.
,
Roy
,
J.
, and
Gasser
,
T. C.
,
2013
, “
The Quasi-Static Failure Properties of the Abdominal Aortic Aneurysm Wall Estimated by a Mixed Experimental-Numerical Approach
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1554
1566
.
17.
García-Herrera
,
C. M.
,
Atienza
,
J. M.
,
Rojo
,
F. J.
,
Claes
,
E.
,
Guinea
,
G. V.
,
Celentano
,
D. J.
,
García-Montero
,
C.
, and
Burgos
,
R. L.
,
2012
, “
Mechanical Behaviour and Rupture of Normal and Pathological Human Ascending Aortic Wall
,”
Med. Biol. Eng. Comput.
,
50
(
6
), pp.
559
566
.
18.
Mohan
,
D.
, and
Melvin
,
J. W.
,
1982
, “
Failure Properties of Passive Human Aortic Tissue. I—Uniaxial Tension Tests
,”
J. Biomech.
,
15
(
11
), pp.
887
902
.
19.
Okamoto
,
R. J.
,
Wagenseil
,
J. E.
,
DeLong
,
W. R.
,
Peterson
,
S. J.
,
Kouchoukos
,
N. T.
, and
Sundt
,
T. M.
,
2002
, “
Mechanical Properties of Dilated Human Ascending Aorta
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
624
635
.
20.
Korenczuk
,
C. E.
,
Votava
,
L. E.
,
Dhume
,
R. Y.
,
Kizilski
,
S. B.
,
Brown
,
G. E.
,
Narain
,
R.
, and
Barocas
,
V. H.
,
2017
, “
Isotropic Failure Criteria are Not Appropriate for Anisotropic Fibrous Biological Tissues
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
071008
.
21.
Stemper
,
B. D.
,
Yoganandan
,
N.
,
Stineman
,
M. R.
,
Gennarelli
,
T. A.
,
Baisden
,
J. L.
, and
Pintar
,
F. A.
,
2007
, “
Mechanics of Fresh, Refrigerated, and Frozen Arterial Tissue
,”
J. Surg. Res.
,
139
(
2
), pp.
236
242
.
22.
Shah
,
S. B.
,
Witzenburg
,
C.
,
Hadi
,
M. F.
,
Wagner
,
H. P.
,
Goodrich
,
J. M.
,
Alford
,
P. W.
, and
Barocas
,
V. H.
,
2014
, “
Prefailure and Failure Mechanics of the Porcine Ascending Thoracic Aorta: Experiments and a Multiscale Model
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021028
.
23.
ASTM
,
2006
, “
Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers–Tension
,” ASTM International, West Conshohoken, PA, Standard No. D412-06.
24.
Fortunato
,
R. N.
,
Sang
,
C.
,
Robertson
,
A. M.
, and
Maiti
,
S.
,
2017
, “
Computational Study of Uniaxial Tension Testing
,”
Fifth International Conference on Computational and Mathematical Biomedical Engineering (CMBE)
, Pittsburgh, PA, Apr. 10–12, pp.
1304
1307
.
25.
Jacobs
,
N. T.
,
Cortes
,
D. H.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2013
, “
Biaxial Tension of Fibrous Tissue: Using Finite Element Methods to Address Experimental Challenges Arising From Boundary Conditions and Anisotropy
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021004
.
26.
Sun
,
W.
,
Sacks
,
M. S.
, and
Scott
,
M. J.
,
2005
, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
709
715
.
27.
Hill
,
M. R.
,
Duan
,
X.
,
Gibson
,
G. A.
,
Watkins
,
S.
, and
Robertson
,
A. M.
,
2012
, “
A Theoretical and Non-Destructive Experimental Approach for Direct Inclusion of Measured Collagen Orientation and Recruitment Into Mechanical Models of the Artery Wall
,”
J. Biomech.
,
45
(
5
), pp.
762
771
.
28.
Nittur
,
P. G.
,
Maiti
,
S.
, and
Geubelle
,
P. H.
,
2008
, “
Grain-Level Analysis of Dynamic Fragmentation of Ceramics Under Multi-Axial Compression
,”
J. Mech. Phys. Solids
,
56
(
3
), pp.
993
1017
.
29.
Monson
,
K. L.
,
Goldsmith
,
W.
,
Barbaro
,
N. M.
, and
Manley
,
G. T.
,
2005
, “
Significance of Source and Size in the Mechanical Response of Human Cerebral Blood Vessels
,”
J. Biomech.
,
38
(
4
), pp.
737
744
.
30.
Badel
,
P.
,
Avril
,
S.
,
Lessner
,
S.
, and
Sutton
,
M.
,
2011
, “
Mechanical Identification of Layer-Specific Properties of Mouse Carotid Arteries Using 3D-DIC and a Hyperelastic Anisotropic Constitutive Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
1
), pp.
37
48
.
31.
Di Martino
,
E. S.
,
Bohra
,
A.
,
Vande Geest
,
J. P.
,
Gupta
,
N.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Biomechanical Properties of Ruptured Versus Electively Repaired Abdominal Aortic Aneurysm Wall Tissue
,”
J. Vasc. Surg.
,
43
(
3
), pp.
570
576
.
32.
Walsh
,
M. T.
,
Cunnane
,
E. M.
,
Mulvihill
,
J. J.
,
Akyildiz
,
A. C.
,
Gijsen
,
F. J. H.
, and
Holzapfel
,
G. A.
,
2014
, “
Uniaxial Tensile Testing Approaches for Characterisation of Atherosclerotic Plaques
,”
J. Biomech.
,
47
(
4
), pp.
793
804
.
33.
Wang
,
Y.
,
Ning
,
J.
,
Johnson
,
J. A.
,
Sutton
,
M. A.
, and
Lessner
,
S. M.
,
2011
, “
Development of a Quantitative Mechanical Test of Atherosclerotic Plaque Stability
,”
J. Biomech.
,
44
(
13
), pp.
2439
2445
.
34.
Peloquin
,
J. M.
,
Santare
,
M. H.
, and
Elliott
,
D. M.
,
2017
, “
Advances in Quantification of Meniscus Tensile Mechanics Including Nonlinearity, Yield, and Failure
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021002
.
35.
Robertson
,
A. M.
,
Duan
,
X.
,
Maiti
,
S.
,
Thunes
,
J. R.
,
Gade
,
P.
,
Aziz
,
K.
,
Cebral
,
J. R.
,
Frösen
,
J.
,
Tulamo
,
R.
,
Fortunato
,
R. N.
,
Charbel
,
F.
, and
Amin-Hanjani
,
S.
,
2017
, “
Role of Calcification in Aneurysm Failure-a Case Study
,”
Fifth International Conference on Computational and Mathematical Biomedical Engineering (CMBE)
, Pittsburgh, PA, Apr. 10–12, pp.
52
55
.
36.
Mohan
,
D.
, and
Melvin
,
J. W.
,
1983
, “
Failure Properties of Passive Human Aortic Tissue—II: Biaxial Tension Tests
,”
J. Biomech.
,
16
(
1
), pp.
39
44
.
37.
Lacolley
,
P.
,
Challande
,
P.
,
Boumaza
,
S.
,
Boutouyrie
,
P.
,
Grimaud
,
J.
,
Paulin
,
D.
,
Lamaziere
,
J. D.
, and
Li
,
Z.
,
2001
, “
Mechanical Properties and Structure of Carotid Arteries in Mice Lacking Desmin
,”
Cardiovasc. Res.
,
51
(
1
), pp.
178
187
.
38.
Louis
,
H.
,
Kakou
,
A.
,
Regnault
,
V.
,
Labat
,
C.
,
Bressenot
,
A.
,
Gao-Li
,
J.
,
Gardner
,
H.
,
Thornton
,
S. N.
,
Challande
,
P.
,
Li
,
Z.
, and
Lacolley
,
P.
,
2007
, “
Role of α1β1-Integrin in Arterial Stiffness and Angiotensin-Induced Arterial Wall Hypertrophy in Mice
,”
Am. J. Physiol. Heart Circ. Physiol.
,
293
(
4
), pp.
H2597
H2604
.
39.
Kim
,
J.-H.
,
Avril
,
S.
,
Duprey
,
A.
, and
Favre
,
J.-P.
,
2012
, “
Experimental Characterization of Rupture in Human Aortic Aneurysms Using a Full-Field Measurement Technique
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
841
853
.
40.
Duprey
,
A.
,
Trabelsi
,
O.
,
Vola
,
M.
,
Favre
,
J. P.
, and
Avril
,
S.
,
2016
, “
Biaxial Rupture Properties of Ascending Thoracic Aortic Aneurysms
,”
Acta Biomater.
,
42
, pp.
273
285
.
41.
Bellini
,
C.
,
Kristofik
,
N. J.
,
Bersi
,
M. R.
,
Kyriakides
,
T. R.
, and
Humphrey
,
J. D.
,
2017
, “
A Hidden Structural Vulnerability in the Thrombospondin-2 Deficient Aorta Increases the Propensity to Intramural Delamination
,”
J. Mech. Behav. Biomed. Mater.
,
71
, pp.
397
406
.
42.
Romo
,
A.
,
Badel
,
P.
,
Duprey
,
A.
,
Favre
,
J. P.
, and
Avril
,
S.
,
2014
, “
In Vitro Analysis of Localized Aneurysm Rupture
,”
J. Biomech.
,
47
(
3
), pp.
607
616
.
43.
Stemper
,
B. D.
,
Yoganandan
,
N.
,
Sinson
,
G. P.
,
Gennarelli
,
T. A.
,
Stineman
,
M. R.
, and
Pintar
,
F. A.
,
2007
, “
Biomechanical Characterization of Internal Layer Subfailure in Blunt Arterial Injury
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
285
291
.
44.
Iliopoulos
,
D. C.
,
Deveja
,
R. P.
,
Kritharis
,
E. P.
,
Perrea
,
D.
,
Sionis
,
G. D.
,
Toutouzas
,
K.
,
Stefanadis
,
C.
, and
Sokolis
,
D. P.
,
2009
, “
Regional and Directional Variations in the Mechanical Properties of Ascending Thoracic Aortic Aneurysms
,”
Med. Eng. Phys.
,
31
(
1
), pp.
1
9
.
45.
Cebral
,
J. R.
,
Duan
,
X.
,
Gade
,
P. S.
,
Chung
,
B. J.
,
Mut
,
F.
,
Aziz
,
K.
, and
Robertson
,
A. M.
,
2016
, “
Regional Mapping of Flow and Wall Characteristics of Intracranial Aneurysms
,”
Ann. Biomed. Eng.
,
44
(
12
), pp.
3553
3567
.
46.
Ng
,
B. H.
,
Chou
,
S. M.
, and
Krishna
,
V.
,
2005
, “
The Influence of Gripping Techniques on the Tensile Properties of Tendons
,”
Proc. Inst. Mech. Eng. Part H
,
219
(
5
), pp.
349
354
.
47.
Nye
,
K. S.
,
Converse
,
M. I.
,
Dahl
,
M. J.
,
Albertine
,
K. H.
, and
Monson
,
K. L.
,
2017
, “
Development of Mechanical and Failure Properties in Sheep Cerebral Arteries
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
1101
1110
.
48.
Robertson
,
A. M.
,
Hill
,
M. R.
, and
Li
,
D.
,
2012
, “
Structurally Motivated Damage Models for Arterial Walls. Theory and Application
,”
Modelling of Physiological Flows
,
D.
Ambrosi
,
A.
Quarteroni
, and
G.
Rozza
, eds.,
Springer
,
Milano, Italy
, pp.
143
185
.
You do not currently have access to this content.