Biomechanical studies have indicated that the conventional nonanatomic reconstruction techniques for lateral ankle sprain (LAS) tend to restrict subtalar joint motion compared to intact ankle joints. Excessive restriction in subtalar motion may lead to chronic pain, functional difficulties, and development of osteoarthritis (OA). Therefore, various anatomic surgical techniques to reconstruct both the anterior talofibular and calcaneofibular ligaments (CaFL) have been introduced. In this study, ankle joint stability was evaluated using multibody computational ankle joint model to assess two new anatomic reconstruction and three popular nonanatomic reconstruction techniques. An LAS injury, three popular nonanatomic reconstruction models (Watson-Jones, Evans, and Chrisman–Snook) and two common types of anatomic reconstruction models were developed based on the intact ankle model. The stability of ankle in both talocrural and subtalar joint were evaluated under anterior drawer test (150 N anterior force), inversion test (3 N·m inversion moment), internal rotational test (3 N·m internal rotation moment), and the combined loading test (9 N·m inversion and internal moment as well as 1800 N compressive force). Our overall results show that the two anatomic reconstruction techniques were superior to the nonanatomic reconstruction techniques in stabilizing both talocrural and subtalar joints. Restricted subtalar joint motion, which is mainly observed in Watson-Jones and Chrisman–Snook techniques, was not shown in the anatomical reconstructions. Evans technique was beneficial for subtalar joint as it does not restrict subtalar motion, though Evans technique was insufficient for restoring talocrural joint inversion. The anatomical reconstruction techniques best recovered ankle stability.

References

References
1.
Fong
,
D. T.
,
Hong
,
Y.
,
Chan
,
L. K.
,
Yung
,
P. S. H.
, and
Chan
,
K. M.
,
2007
, “
A Systematic Review on Ankle Injury and Ankle Sprain in Sports
,”
Sports Med.
,
37
(
1
), pp.
73
94
.
2.
Waterman
,
B. R.
,
Belmont
,
P. J.
, Jr.
,
Cameron
,
K. L.
,
Svoboda
,
S. J.
,
Alitz
,
C. J.
, and
Owens
,
B. D.
,
2011
, “
Risk Factors for Syndesmotic and Medial Ankle Sprain: Role of Sex, Sport, and Level of Competition
,”
Am. J. Sports Med.
,
39
(
5
), pp.
992
998
.
3.
Barker
,
H. B.
,
Beynnon
,
B. D.
, and
Renström
,
P. A.
,
1997
, “
Ankle Injury Risk Factors in Sports
,”
Sports Med.
,
23
(
2
), pp.
69
74
.
4.
Kobayashi
,
T.
, and
Gamada
,
K.
,
2014
, “
Lateral Ankle Sprain and Chronic Ankle Instability: A Critical Review
,”
Foot Ankle Spec.
,
7
(
4
), pp.
298
326
.
5.
Yde
,
J.
, and
Nielsen
,
A. B.
,
1990
, “
Sports Injuries in Adolescents' Ball Games: Soccer, Handball and Basketball
,”
Br. J. Sports Med.
,
24
(
1
), pp.
51
54
.
6.
Yeung
,
M. S.
,
Chan
,
K. M.
,
So
,
C. H.
, and
Yuan
,
W. Y.
,
1994
, “
An Epidemiological Survey on Ankle Sprain
,”
Br. J. Sports Med.
,
28
(
2
), pp.
112
116
.
7.
Taga
,
I.
,
Shino
,
K.
,
Inoue
,
M.
,
Nakata
,
K.
, and
Maeda
,
A.
,
1993
, “
Articular Cartilage Lesions in Ankles With Lateral Ligament Injury. An Arthroscopic Study
,”
Am. J. Sports Med.
,
21
(
1
), pp.
120
127
.
8.
Harrington
,
T.
,
Crichton
,
K. J.
, and
Anderson
,
I. F.
,
1993
, “
Overuse Ballet Injury of the Base of the Second Metatarsal: A Diagnostic Problem
,”
Am. J. Sports Med.
,
21
(
4
), pp.
591
598
.
9.
Broström
,
L.
,
1966
, “
Sprained Ankles. V. Treatment and Prognosis in Recent Ligament Ruptures
,”
Acta. Chir. Scand.
,
132
(
5
), pp.
537
550
.
10.
Colville
,
M. R.
,
Marder
,
R. A.
, and
Zarins
,
B.
,
1992
, “
Reconstruction of the Lateral Ankle Ligaments a Biomechanical Analysis
,”
Am. J. Sports Med.
,
20
(
5
), pp.
594
600
.
11.
Galhoum
,
A. E.
,
Wiewiorski
,
M.
, and
Valderrabano
,
V.
,
2017
, “
Ankle Instability: Anatomy, Mechanics, Management and Sequelae
,”
Sports Orthop. Traumatol.
,
33
(
1
), pp.
47
56
.
12.
Watson-Jones
,
R.
,
1941
,
Fractures and Other Bone and Joint Injuries
,
Williams and Wilkins
, Baltimore, MD.
13.
Evans
,
D. L.
,
1953
, “
Recurrent Instability of the Ankle—A Method of Surgical Treatment
,”
Proc. R. Soc. Med.
,
46
(
5
), pp.
343
344
.
14.
Chrisman
,
O. D.
, and
Snook
,
G. A.
,
1969
, “
Reconstruction of Lateral Ligament Tears of the Ankle
,”
J. Bone Jt. Surg. Am.
,
51
(
5
), pp.
904
912
.
15.
DiGiovanni
,
C. W.
, and
Brodsky
,
A.
,
2006
, “
Current Concepts: Lateral Ankle Instability
,”
Foot Ankle Int.
,
27
(
10
), pp.
854
866
.
16.
Saltzman
,
C. L.
,
Salamon
,
M. L.
,
Blanchard
,
G. M.
,
Huff
,
T.
,
Hayes
,
A.
,
Buckwalter
,
J. A.
, and
Amendola
,
A.
,
2005
, “
Epidemiology of Ankle Arthritis: Report of a Consecutive Series of 639 Patients From a Tertiary Orthopaedic Center
,”
Iowa Orthop. J.
,
25
, pp.
44
46
.
17.
Krips
,
R.
,
van Dijk
,
C. N.
,
Halasi
,
T.
,
Lehtonen
,
H.
,
Corradini
,
C.
,
Moyen
,
B.
, and
Karlsson
,
J.
,
2001
, “
Long-Term Outcome of Anatomical Reconstruction versus Tenodesis for the Treatment of Chronic Anterolateral Instability of the Ankle Joint: A Multicenter Study
,”
Foot Ankle Int.
,
22
(
5
), pp.
415
421
.
18.
Hennrikus
,
W. L.
,
Mapes
,
R. C.
,
Lyons
,
P. M.
, and
Lapoint
,
J. M.
,
1996
, “
Outcomes of the Chrisman-Snook and Modified-Broström Procedures for Chronic Lateral Ankle Instability: A Prospective, Randomized Comparison
,”
Am. J. Sports Med.
,
24
(
4
), pp.
400
404
.
19.
Bahr
,
R.
,
Pena
,
F.
,
Shine
,
J.
,
Lew
,
W. D.
,
Tyrdal
,
S.
, and
Engebretsen
,
L.
,
1997
, “
Biomechanics of Ankle Ligament Reconstruction an In Vivo Comparison of the Broström Repair, Watson-Jones Reconstruction, and a New Anatomic Reconstruction Technique
,”
Am. J. Sports Med.
,
25
(
4
), pp.
424
432
.
20.
Liu
,
S. H.
, and
Baker
,
C. L.
,
1994
, “
Comparison of Lateral Ankle Ligamentous Reconstruction Procedures
,”
Am. J. Sports Med.
,
22
(
3
), pp.
313
317
.
21.
Marcus Hollis
,
J.
,
Dale Blasier
,
R.
,
Flahiff
,
C. M.
, and
Hofmann
,
O. E.
,
1995
, “
Biomechanical Comparison of Reconstruction Techniques in Simulated Lateral Ankle Ligament Injury
,”
Am. J. Sports Med.
,
23
(
6
), pp.
678
682
.
22.
Zhang
,
M. Y.
,
Xu
,
C.
, and
Li
,
K. H.
,
2011
, “
Finite Element Analysis of Nonanatomic Tenodesis Reconstruction Methods of Combined Anterior Talofibular Ligament and Calcaneofibular Ligament Deficiency
,”
Foot Ankle Int.
,
32
(
10
), pp.
1000
1008
.
23.
Ahn
,
J. H.
,
Choy
,
W. S.
, and
Kim
,
H. Y.
,
2011
, “
Reconstruction of the Lateral Ankle Ligament With a Long Extensor Tendon Graft of the Fourth Toe
,”
Am. J. Sports Med.
,
39
(
3
), pp.
637
644
.
24.
Budny
,
A. M.
, and
Schuberth
,
J. M.
,
2012
, “
Autologous Split Peroneus Longus Lateral Ankle Stabilization
,”
J. Foot Ankle Surg.
,
51
(
5
), pp.
588
592
.
25.
Ellis
,
S. J.
,
Williams
,
B. R.
,
Pavlov
,
H.
, and
Deland
,
J.
,
2011
, “
Results of Anatomic Lateral Ankle Ligament Reconstruction With Tendon Allograft
,”
HSS J.
,
7
(
2
), p.
134
.
26.
Guillo
,
S.
,
Archbold
,
P.
,
Perera
,
A.
,
Bauer
,
T.
, and
Sonnery-Cottet
,
B.
,
2014
, “
Arthroscopic Anatomic Reconstruction of the Lateral Ligaments of the Ankle With Gracilis Autograft
,”
Arthrosc. Tech.
,
3
(
5
), pp.
593
598
.
27.
Ibrahim
,
S. A.
,
Hamido
,
F.
,
Al Misfer
,
A. K.
,
Ghafar
,
S. A.
,
Awad
,
A.
,
Salem
,
H. K.
,
Alhran
,
H.
, and
Khirait
,
S.
,
2011
, “
Anatomical Reconstruction of the Lateral Ligaments Using Gracillis Tendon in Chronic Ankle Instability; a New Technique
,”
Foot Ankle Surg.
,
17
(
4
), pp.
239
246
.
28.
Jung
,
H. G.
,
Shin
,
M. H.
,
Park
,
J. T.
,
Eom
,
J. S.
,
Lee
,
D. O.
, and
Lee
,
S. H.
,
2015
, “
Anatomical Reconstruction of Lateral Ankle Ligaments Using Free Tendon Allografts and Biotenodesis Screws
,”
Foot Ankle Int.
,
36
(
9
), pp.
1064
1071
.
29.
Kim
,
H. N.
,
Jeon
,
J. Y.
,
Dong
,
Q.
,
Noh
,
K. C.
,
Chung
,
K. J.
,
Kim
,
H. K.
,
Hwang
,
J. H.
, and
Park
,
Y. W.
,
2015
, “
Lateral Ankle Ligament Reconstruction Using the Anterior Half of the Peroneus Longus Tendon
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
23
(
6
), pp.
1877
1885
.
30.
Nakata
,
K.
,
Shino
,
K.
,
Horibe
,
S.
,
Natsu-ume
,
T.
,
Mae
,
T.
, and
Ochi
,
T.
,
2000
, “
Reconstruction of the Lateral Ligaments of the Ankle Using Solvent-Dried and Gamma-Irradiated Allogeneic Fascia Lata
,”
Bone Jt. J.
,
82
(
4
), pp.
579
582
.
31.
Sha
,
Y.
,
Wang
,
H.
,
Ding
,
J.
,
Tang
,
H.
,
Li
,
C.
,
Luo
,
H.
,
Lui
,
J.
, and
Xu
,
Y.
,
2016
, “
A Novel Patient-Specific Navigational Template for Anatomical Reconstruction of the Lateral Ankle Ligaments
,”
Int. Orthop.
,
40
(
1
), pp.
59
64
.
32.
Sugimoto
,
K.
,
Takakura
,
Y.
,
Kumai
,
T.
,
Iwai
,
M.
, and
Tanaka
,
Y.
,
2002
, “
Reconstruction of the Lateral Ankle Ligaments With Bone-Patellar Tendon Graft in Patients With Chronic Ankle Instability a Preliminary Report
,”
Am. J. Sports Med.
,
30
(
3
), pp.
340
346
.
33.
Takao
,
M.
,
Oae
,
K.
,
Uchio
,
Y.
,
Ochi
,
M.
, and
Yamamoto
,
H.
,
2005
, “
Anatomical Reconstruction of the Lateral Ligaments of the Ankle With a Gracilis Autograft a New Technique Using an Interference Fit Anchoring System
,”
Am. J. Sports Med.
,
33
(
6
), pp.
814
823
.
34.
Purevsuren
,
T.
,
Batbaatar
,
M.
,
Kim
,
K.
,
Park
,
W. M.
,
Jang
,
S. H.
, and
Kim
,
Y. H.
,
2017
, “
Investigation of Ligament Strains in Lateral Ankle Sprain Using Computational Simulation of Accidental Injury Cases
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp. 3627–3632.
35.
Button
,
K. D.
,
Wei
,
F.
,
Meyer
,
E. G.
, and
Haut
,
R. C.
,
2013
, “
Specimen-Specific Computational Models of Ankle Sprains Produced in a Laboratory Setting
,”
ASME J. Biomech. Eng.
,
135
(
4
), p.
041001
.
36.
Iaquinto
,
J. M.
, and
Wayne
,
J. S.
,
2010
, “
Computational Model of the Lower Leg and Foot/Ankle Complex: Application to Arch Stability
,”
ASME J. Biomech. Eng.
,
132
(
2
), p.
021009
.
37.
Liacouras
,
P. C.
, and
Wayne
,
J. S.
,
2007
, “
Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
811
817
.
38.
Wei
,
F.
,
Braman
,
J. E.
,
Weaver
,
B. T.
, and
Haut
,
R. C.
,
2011
, “
Determination of Dynamic Ankle Ligament Strains From a Computational Model Driven by Motion Analysis Based Kinematic Data
,”
J. Biomech.
,
44
(
15
), pp.
2636
2641
.
39.
Wei
,
F.
,
Fong
,
D. T.
,
Chan
,
K. M.
, and
Haut
,
R. C.
,
2015
, “
Estimation of Ligament Strains and Joint Moments in the Ankle During a Supination Sprain Injury
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
3
), pp.
243
248
.
40.
Wei
,
F.
,
Hunley
,
S. C.
,
Powell
,
J. W.
, and
Haut
,
R. C.
,
2010
, “
Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury Due to External Rotation
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
756
765
.
41.
Netter
,
F. H.
,
2014
,
Atlas of Human Anatomy
, Saunders, Philadelphia, PA.
42.
Rohen
,
J. W.
,
Yokochi
,
C.
, and
Lütjen-Drecoll
,
E.
,
2006
,
Color Atlas of Anatomy: A Photographic Study of the Human Body
,
Schattauer Verlag
, Stuttgart, Germany.
43.
Bohnsack
,
M.
,
Sürie
,
B.
,
Kirsch
,
L.
, and
Wülker
,
N.
,
2002
, “
Biomechanical Properties of Commonly Used Autogenous Transplants in the Surgical Treatment of Chronic Lateral Ankle Instability
,”
Foot Ankle Int.
,
23
(
7
), pp.
661
664
.
44.
Rahman
,
M.
,
Cil
,
A.
, and
Stylianou
,
A. P.
,
2016
, “
Prediction of Elbow Joint Contact Mechanics in the Multibody Framework
,”
Med. Eng. Phys.
,
38
(
3
), pp.
257
266
.
45.
Kia
,
M.
,
Schafer
,
K.
,
Lipman
,
J.
,
Cross
,
M.
,
Mayman
,
D.
,
Pearle
,
A.
,
Wickiewicz
,
T.
, and
Imhauser
,
C.
,
2016
, “
A Multibody Knee Model Corroborates Subject-Specific Experimental Measurements of Low Ligament Forces and Kinematic Coupling During Passive Flexion
,”
ASME J. Biomech. Eng.
,
138
(
5
), p.
051010
.
46.
Kerkhoffs
,
G. M.
,
Struijs
,
P. A.
,
Marti
,
R. K.
,
Assendelft
,
W. J.
,
Blankevoort
,
L.
, and
Van Dijk
,
C. N.
,
2002
, “
Different Functional Treatment Strategies for Acute Lateral Ankle Ligament Injuries in Adults
,”
Cochrane Database Syst. Rev.
,
3
(
3
), p.
CD002938
.
47.
Hubbard
,
T. J.
, and
Hertel
,
J.
, “
Mechanical Contributions to Chronic Lateral Ankle Instability
,”
Sports Med.
,
36
(
3
), pp.
263
277
.
48.
Kovaleski
,
J. E.
,
Heitman
,
R. J.
,
Gurchiek
,
L. R.
,
Hollis
,
J. M.
,
Liu
,
W.
, and
Pearsall
,
A. W.
, IV
,
2014
, “
Joint Stability Characteristics of the Ankle Complex after Lateral Ligamentous Injury—Part I: A Laboratory Comparison Using Arthrometric Measurement
,”
J. Athl. Train.
,
49
(
2
), pp.
192
197
.
49.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
DâLima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
, and
Schmid
,
O.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.
50.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
,
2000
, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
1
), p.
15
–22.
You do not currently have access to this content.