Contractile stress generation by adherent cells is largely determined by the interplay of forces within their cytoskeleton. It is known that actin stress fibers, connected to focal adhesions, provide contractile stress generation, while microtubules and intermediate filaments provide cells compressive stiffness. Recent studies have shown the importance of the interplay between the stress fibers and the intermediate filament vimentin. Therefore, the effect of the interplay between the stress fibers and vimentin on stress generation was quantified in this study. We hypothesized that net stress generation comprises the stress fiber contraction combined with the vimentin resistance. We expected an increased net stress in vimentin knockout (VimKO) mouse embryonic fibroblasts (MEFs) compared to their wild-type (vimentin wild-type (VimWT)) counterparts, due to the decreased resistance against stress fiber contractility. To test this, the net stress generation by VimKO and VimWT MEFs was determined using the thin film method combined with sample-specific finite element modeling. Additionally, focal adhesion and stress fiber organization were examined via immunofluorescent staining. Net stress generation of VimKO MEFs was three-fold higher compared to VimWT MEFs. No differences in focal adhesion size or stress fiber organization and orientation were found between the two cell types. This suggests that the increased net stress generation in VimKO MEFs was caused by the absence of the resistance that vimentin provides against stress fiber contraction. Taken together, these data suggest that vimentin resists the stress fiber contractility, as hypothesized, thus indicating the importance of vimentin in regulating cellular stress generation by adherent cells.

References

References
1.
Humphrey
,
J. D.
,
Dufresne
,
E. R.
, and
Schwartz
,
M. A.
,
2014
, “
Mechanotransduction and Extracellular Matrix Homeostasis
,”
Nat. Rev. Mol. Cell Biol.
,
15
(
12
), pp.
802
812
.
2.
Huber
,
F.
,
Boire
,
A.
,
Lopez
,
M. P.
, and
Koenderink
,
G. H.
,
2015
, “
Cytoskeletal Crosstalk: When Three Different Personalities Team Up
,”
Curr. Opin. Cell Biol.
,
32
, pp.
39
47
.
3.
Chi
,
Q.
,
Yin
,
T.
,
Gregersen
,
H.
,
Deng
,
X.
,
Fan
,
Y.
,
Zhao
,
J.
,
Liao
,
D.
, and
Wang
,
G.
,
2014
, “
Rear Actomyosin Contractility-Driven Directional Cell Migration in Three-Dimensional Matrices: A Mechano-Chemical Coupling Mechanism
,”
J. R. Soc. Interface
,
11
(
95
), p.
20131072
.
4.
Tamiello
,
C.
,
Halder
,
M.
,
Kamps
,
M. A.
,
Baaijens
,
F. P.
,
Broers
,
J. L.
, and
Bouten
,
C. V.
,
2017
, “
Cellular Strain Avoidance is Mediated by a Functional Actin Cap; Observations in an LMNA-Deficient Cell Model
,”
J. Cell Sci.
,
130
(
4
), pp.
779
790
.
5.
McBeath
,
R.
,
Pirone
,
D. M.
,
Nelson
,
C. M.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2004
, “
Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
,
6
(
4
), pp.
483
495
.
6.
Naumanen
,
P.
,
Lappalainen
,
P.
, and
Hotulainen
,
P.
,
2008
, “
Mechanisms of Actin Stress Fibre Assembly
,”
J. Microsc.
,
231
(
3
), pp.
446
454
.
7.
Jiu
,
Y.
,
Peranen
,
J.
,
Schaible
,
N.
,
Cheng
,
F.
,
Eriksson
,
J. E.
,
Krishnan
,
R.
, and
Lappalainen
,
P.
,
2017
, “
Vimentin Intermediate Filaments Control Actin Stress Fiber Assembly Through GEF-H1 and RhoA
,”
J. Cell Sci.
,
130
(
5
), pp.
892
902
.
8.
Mendez
,
M. G.
,
Restle
,
D.
, and
Janmey
,
P. A.
,
2014
, “
Vimentin Enhances Cell Elastic Behavior and Protects Against Compressive Stress
,”
Biophys. J.
,
107
(
2
), pp.
314
323
.
9.
van Loosdregt
,
I. A.
,
Kamps
,
M. A.
,
Oomens
,
C. W.
,
Loerakker
,
S.
,
Broers
,
J. L.
, and
Bouten
,
C. V.
,
2017
, “
Lmna Knockout Mouse Embryonic Fibroblasts are Less Contractile Compared to Their Wildtype Counterparts
,”
Integr. Biol.
,
9
(
8
), pp.
709
721
.
10.
Ivaska
,
J.
,
Pallari
,
H. M.
,
Nevo
,
J.
, and
Eriksson
,
J. E.
,
2007
, “
Novel Functions of Vimentin in Cell Adhesion, Migration, and Signaling
,”
Exp. Cell Res.
,
313
(
10
), pp.
2050
2062
.
11.
Janmey
,
P. A.
,
Euteneuer
,
U.
,
Traub
,
P.
, and
Schliwa
,
M.
,
1991
, “
Viscoelastic Properties of Vimentin Compared With Other Filamentous Biopolymer Networks
,”
J. Cell Biol.
,
113
(
1
), pp.
155
160
.
12.
Esue
,
O.
,
Carson
,
A. A.
,
Tseng
,
Y.
, and
Wirtz
,
D.
,
2006
, “
A Direct Interaction Between Actin and Vimentin Filaments Mediated by the Tail Domain of Vimentin
,”
J. Biol. Chem.
,
281
(
41
), pp.
30393
30399
.
13.
Gregor
,
M.
,
Osmanagic-Myers
,
S.
,
Burgstaller
,
G.
,
Wolfram
,
M.
,
Fischer
,
I.
,
Walko
,
G.
,
Resch
,
G. P.
,
Jorgl
,
A.
,
Herrmann
,
H.
, and
Wiche
,
G.
,
2014
, “
Mechanosensing Through Focal Adhesion-Anchored Intermediate Filaments
,”
FASEB J.
,
28
(
2
), pp.
715
729
.
14.
Burgstaller
,
G.
,
Gregor
,
M.
,
Winter
,
L.
, and
Wiche
,
G.
,
2010
, “
Keeping the Vimentin Network Under Control: Cell-Matrix Adhesion-Associated Plectin 1f Affects Cell Shape and Polarity of Fibroblasts
,”
Mol. Biol. Cell
,
21
(
19
), pp.
3362
3375
.
15.
Jiu
,
Y.
,
Lehtimaki
,
J.
,
Tojkander
,
S.
,
Cheng
,
F.
,
Jaalinoja
,
H.
,
Liu
,
X.
,
Varjosalo
,
M.
,
Eriksson
,
J. E.
, and
Lappalainen
,
P.
,
2015
, “
Bidirectional Interplay Between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers
,”
Cell Rep.
,
11
(
10
), pp.
1511
1518
.
16.
Wagner
,
O. I.
,
Rammensee
,
S.
,
Korde
,
N.
,
Wen
,
Q.
,
Leterrier
,
J. F.
, and
Janmey
,
P. A.
,
2007
, “
Softness, Strength and Self-Repair in Intermediate Filament Networks
,”
Exp. Cell Res.
,
313
(
10
), pp.
2228
2235
.
17.
Goldman
,
R. D.
,
Khuon
,
S.
,
Chou
,
Y. H.
,
Opal
,
P.
, and
Steinert
,
P. M.
,
1996
, “
The Function of Intermediate Filaments in Cell Shape and Cytoskeletal Integrity
,”
J. Cell Biol.
,
134
(
4
), pp.
971
983
.
18.
Eckes
,
B.
,
Dogic
,
D.
,
Colucci-Guyon
,
E.
,
Wang
,
N.
,
Maniotis
,
A.
,
Ingber
,
D.
,
Merckling
,
A.
,
Langa
,
F.
,
Aumailley
,
M.
,
Delouvee
,
A.
,
Koteliansky
,
V.
,
Babinet
,
C.
, and
Krieg
,
T.
,
1998
, “
Impaired Mechanical Stability, Migration and Contractile Capacity in Vimentin-Deficient Fibroblasts
,”
J. Cell Sci.
,
111
(
Pt. 13
), pp.
1897
1907
.http://jcs.biologists.org/content/111/13/1897.long
19.
Wang
,
N.
, and
Stamenovic
,
D.
,
2000
, “
Contribution of Intermediate Filaments to Cell Stiffness, Stiffening, and Growth
,”
Am. J. Physiol. Cell Physiol.
,
279
(
1
), pp.
C188
C194
.
20.
Guo
,
M.
,
Ehrlicher
,
A. J.
,
Mahammad
,
S.
,
Fabich
,
H.
,
Jensen
,
M. H.
,
Moore
,
J. R.
,
Fredberg
,
J. J.
,
Goldman
,
R. D.
, and
Weitz
,
D. A.
,
2013
, “
The Role of Vimentin Intermediate Filaments in Cortical and Cytoplasmic Mechanics
,”
Biophys. J.
,
105
(
7
), pp.
1562
1568
.
21.
Bertaud
,
J.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2010
, “
Intermediate Filament-Deficient Cells are Mechanically Softer at Large Deformation: A Multi-Scale Simulation Study
,”
Acta Biomater.
,
6
(
7
), pp.
2457
2466
.
22.
Alford
,
P. W.
,
Nesmith
,
A. P.
,
Seywerd
,
J. N.
,
Grosberg
,
A.
, and
Parker
,
K. K.
,
2011
, “
Vascular Smooth Muscle Contractility Depends on Cell Shape
,”
Integr. Biol.
,
3
(
11
), pp.
1063
1070
.
23.
Grosberg
,
A.
,
Alford
,
P. W.
,
McCain
,
M. L.
, and
Parker
,
K. K.
,
2011
, “
Ensembles of Engineered Cardiac Tissues for Physiological and Pharmacological Study: Heart on a Chip
,”
Lab Chip.
,
11
(
24
), pp.
4165
4173
.
24.
Feinberg
,
A. W.
,
Feigel
,
A.
,
Shevkoplyas
,
S. S.
,
Sheehy
,
S.
,
Whitesides
,
G. M.
, and
Parker
,
K. K.
,
2007
, “
Muscular Thin Films for Building Actuators and Powering Devices
,”
Science
,
317
(
5843
), pp.
1366
1370
.
25.
van Loosdregt
,
I. A.
,
Dekker
,
S.
,
Alford
,
P. W.
,
Oomens
,
C. W.
,
Loerakker
,
S.
, and
Bouten
,
C. V.
,
2016
, “
Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets
,”
Cardiovasc. Eng. Technol.
, epub.
26.
Foolen
,
J.
,
Deshpande
,
V. S.
,
Kanters
,
F. M.
, and
Baaijens
,
F. P.
,
2012
, “
The Influence of Matrix Integrity on Stress-Fiber Remodeling in 3D
,”
Biomater.
,
33
(
30
), pp.
7508
7518
.
27.
Foolen
,
J.
,
Janssen-van den Broek
,
M. W.
, and
Baaijens
,
F. P.
,
2014
, “
Synergy Between Rho Signaling and Matrix Density in Cyclic Stretch-Induced Stress Fiber Organization
,”
Acta Biomater.
,
10
(
5
), pp.
1876
1885
.
28.
Hsu
,
H. J.
,
Lee
,
C. F.
,
Locke
,
A.
,
Vanderzyl
,
S. Q.
, and
Kaunas
,
R.
,
2010
, “
Stretch-Induced Stress Fiber Remodeling and the Activations of JNK and ERK Depend on Mechanical Strain Rate, But Not FAK
,”
PLoS One
,
5
(
8
), p.
e12470
.
29.
Discher
,
D. E.
,
Janmey
,
P.
, and
Wang
,
Y. L.
,
2005
, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.
30.
Butcher
,
D. T.
,
Alliston
,
T.
, and
Weaver
,
V. M.
,
2009
, “
A Tense Situation: Forcing Tumour Progression
,”
Nat. Rev. Cancer
,
9
(
2
), pp.
108
122
.
31.
Discher
,
D. E.
,
Mooney
,
D. J.
, and
Zandstra
,
P. W.
,
2009
, “
Growth Factors, Matrices, and Forces Combine and Control Stem Cells
,”
Science
,
324
(
5935
), pp.
1673
1677
.
32.
Shin
,
H. J.
,
Lee
,
C. H.
,
Cho
,
I. H.
,
Kim
,
Y. J.
,
Lee
,
Y. J.
,
Kim
,
I. A.
,
Park
,
K. D.
,
Yui
,
N.
, and
Shin
,
J. W.
,
2006
, “
Electrospun PLGA Nanofiber Scaffolds for Articular Cartilage Reconstruction: Mechanical Stability, Degradation and Cellular Responses Under Mechanical Stimulation In Vitro
,”
J. Biomater. Sci., Polym. Ed.
,
17
(
1–2
), pp.
103
119
.
33.
Baker
,
S. R.
,
Banerjee
,
S.
,
Bonin
,
K.
, and
Guthold
,
M.
,
2016
, “
Determining the Mechanical Properties of Electrospun Poly-Epsilon-Caprolactone (PCL) Nanofibers Using AFM and a Novel Fiber Anchoring Technique
,”
Mater. Sci. Eng. C, Mater. Biol. Appl.
,
59
, pp.
203
212
.
34.
Costigliola
,
N.
,
Ding
,
L.
,
Burckhardt
,
C. J.
,
Han
,
S. J.
,
Gutierrez
,
E.
,
Mota
,
A.
,
Groisman
,
A.
,
Mitchison
,
T. J.
, and
Danuser
,
G.
,
2017
, “
Vimentin Fibers Orient Traction Stress
,”
Proc. Natl. Acad. Sci. U. S. A
,
114
(
20
), pp.
5195
5200
.
35.
Parsons
,
J. T.
,
Horwitz
,
A. R.
, and
Schwartz
,
M. A.
,
2010
, “
Cell Adhesion: Integrating Cytoskeletal Dynamics and Cellular Tension
,”
Nat. Rev. Mol. Cell Biol.
,
11
(
9
), pp.
633
643
.
36.
Svitkina
,
T. M.
,
Verkhovsky
,
A. B.
, and
Borisy
,
G. G.
,
1996
, “
Plectin Sidearms Mediate Interaction of Intermediate Filaments With Microtubules and Other Components of the Cytoskeleton
,”
J. Cell Biol.
,
135
(
4
), pp.
991
1007
.
You do not currently have access to this content.