Inspiratory flow in a multigeneration pig lung airways was numerically studied at a steady inlet flow rate of 3.2 × 10−4 m3/s corresponding to a Reynolds number of 1150 in the trachea. The model was validated by comparing velocity distributions with previous measurements and simulations in simplified airway geometries. Simulation results provided detailed maps of the axial and secondary flow patterns at different cross sections of the airway tree. The vortex core regions in the airways were visualized using absolute helicity values and suggested the presence of secondary flow vortices where two counter-rotating vortices were observed at the main bifurcation and in many other bifurcations. Both laminar and turbulent flows were considered. Results showed that axial and secondary flows were comparable in the laminar and turbulent cases. Turbulent kinetic energy (TKE) vanished in the more distal airways, which indicates that the flow in these airways approaches laminar flow conditions. The simulation results suggested viscous pressure drop values comparable to earlier studies. The monopodial asymmetric nature of airway branching in pigs resulted in airflow patterns that are different from the less asymmetric human airways. The major daughters of the pig airways tended to have high airflow ratios, which may lead to different particle distribution and sound generation patterns. These differences need to be taken into consideration when interpreting the results of animal studies involving pigs before generalizing these results to humans.

References

References
1.
Farag
,
A.
,
Hammersley
,
J.
,
Olson
,
D.
, and
Ng
,
T.
,
2000
, “
Mechanics of the Flow in the Small and Middle Human Airways
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
576
584
.
2.
Schroter
,
R.
, and
Sudlow
,
M.
,
1969
, “
Flow Patterns in Models of the Human Bronchial Airways
,”
Respir. Physiol.
,
7
(
3
), pp.
341
355
.
3.
Rossmann Js
,
C. A.
,
2015
, “
Pressure Loss Coefficients for Asymmetric Bifurcations of Pulmonary Airways With Predetermined Flow Distributions
,”
J. Bioeng. Biomed. Sci.
,
5
, p. 148.
4.
Banko
,
A. J.
,
Coletti
,
F.
,
Schiavazzi
,
D.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
Three-Dimensional Inspiratory Flow in the Upper and Central Human Airways
,”
Exp. Fluids
,
56
, p. 117.
5.
Lin
,
C. L.
,
Tawhai
,
M. H.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2007
, “
Characteristics of the Turbulent Laryngeal Jet and Its Effect on Airflow in the Human Intra-Thoracic Airways
,”
Respir. Physiol. Neurobiol.
,
157
(
2
), pp.
295
309
.
6.
de Rochefort
,
L.
,
Vial
,
L.
,
Fodil
,
R.
,
Maitre
,
X.
,
Louis
,
B.
,
Isabey
,
D.
, Caillibotte, G.,
Thiriet, M.
,
Bittoun, J.
,
Durand, E.
, and
Sbirlea-Apiou, G.
,
2007
, “
In Vitro Validation of Computational Fluid Dynamic Simulation in Human Proximal Airways With Hyperpolarized 3He Magnetic Resonance Phase-Contrast Velocimetry
,”
J. Appl. Physiol.
,
102
(
5
), pp.
2012
2023
.
7.
Luo
,
H. Y.
, and
Liu
,
Y.
,
2008
, “
Modeling the Bifurcating Flow in a CT-Scanned Human Lung Airway
,”
J. Biomech.
,
41
(
12
), pp.
2681
2688
.
8.
Lin
,
C. L.
,
Tawhai
,
M. H.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2009
, “
Computational Fluid Dynamics
,”
IEEE Eng. Med. Biol. Mag.
,
28
(
3
), pp.
25
33
.
9.
Wells
,
A.
,
Jones
,
I.
,
Hamill
,
S.
, and
Bordas
,
R.
,
2017
, “
The Prediction of Viscous Losses and Pressure Drop in Models of the Human Airways
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
, pp. 2898–2916.https://www.ncbi.nlm.nih.gov/pubmed/28523829
10.
Liu
,
Y.
,
So
,
R. M. C.
, and
Zhang
,
C. H.
,
2003
, “
Modeling the Bifurcating Flow in an Asymmetric Human Lung Airway
,”
J. Biomech.
,
36
(
7
), pp.
951
959
.
11.
Gemci
,
T.
,
Ponyavin
,
V.
,
Chen
,
Y.
,
Chen
,
H.
, and
Collins
,
R.
,
2008
, “
Computational Model of Airflow in Upper 17 Generations of Human Respiratory Tract
,”
J. Biomech.
,
41
(
9
), pp.
2047
2054
.
12.
Chang
,
H.
, and
El Masry
,
O. A.
,
1982
, “
A Model Study of Flow Dynamics in Human Central Airways—Part I: Axial Velocity Profiles
,”
Respir. Physiol.
,
49
(
1
), pp.
75
95
.
13.
Isabey
,
D.
, and
Chang
,
H.
,
1982
, “
A Model Study of Flow Dynamics in Human central Airways—Part II: Secondary Flow Velocities
,”
Respir. Physiol.
,
49
(
1
), pp.
97
113
.
14.
Pedley
,
T.
,
1977
, “
Pulmonary Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
9
, pp.
229
274
.
15.
Weibel
,
E. R.
,
1963
,
Geometry and Dimensions of Airways of Conductive and Transitory Zones
,
Springer
, Berlin.
16.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D. E.
,
Filley
,
G. F.
, and
Cumming
,
G.
,
1971
, “
Models of the Human Bronchial Tree
,”
J. Appl. Physiol.
,
31
(2), pp.
207
217
.http://jap.physiology.org/content/31/2/207
17.
Yang
,
X. L.
,
Liu
,
Y.
,
So
,
R. M.
, and
Yang
,
J. M.
,
2006
, “
The Effect of Inlet Velocity Profile on the Bifurcation COPD Airway Flow
,”
Comput. Biol. Med.
,
36
(
2
), pp.
181
94
.
18.
Nowak
,
N.
,
Kakade
,
P. P.
, and
Annapragada
,
A. V.
,
2003
, “
Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
374
390
.
19.
Liu
,
Y.
,
So
,
R.
, and
Zhang
,
C.
,
2003
, “
Modeling the Bifurcating Flow in a Human Lung Airway
,”
J. Biomech.
,
35
(
4
), pp.
465
473
.https://www.ncbi.nlm.nih.gov/pubmed/11934415
20.
Freitas
,
R. K.
, and
Schroder
,
W.
,
2008
, “
Numerical Investigation of the Three-Dimensional Flow in a Human Lung Model
,”
J. Biomech.
,
41
(
1
), pp.
2446
57
.
21.
Douglas
,
J. S.
,
Dennis
,
M. W.
,
Ridgway
,
P.
, and
Bouhuys
,
A.
,
1972
, “
Airway Dilatation and Constriction in Spontaneously Breathing Guinea Pigs
,”
J. Pharmacol. Exp. Ther.
,
180
(
1
), pp.
98
109
. http://jpet.aspetjournals.org/content/180/1/98/tab-article-info
22.
ChurgAndrew
,
J. L. W.
,
2016
, “
A Model of Tobacco Smoke-Induced Airflow Obstruction in the Guinea Pig
,”
Chest J.
,
121
(5), pp.
188S
191S
.
23.
Kang
,
K. H.
,
Morrow
,
J. D.
,
Roberts
,
L. J.
, II
,
Newman
,
J. H.
, and
Banerjee
,
M.
,
1993
, “
Airway and Vascular Effects of 8-Epi-Prostaglandin F2 Alpha in Isolated Perfused Rat Lung
,”
J. Appl. Physiol.
,
74
(
1
), pp.
460
465
.http://jap.physiology.org/content/74/1/460.article-info
24.
Nadel
,
J. A.
, and
Widdicombe
,
J. G.
,
1962
, “
Effect of Changes in Blood Gas Tensions and Carotid Sinus Pressure on Tracheal Volume and Total Lung Resistance to Airflow
,”
J. Physiol.
,
163
(
1
), pp.
13
33
.
25.
Mansy
,
H.
,
Royston
,
T.
,
Balk
,
R.
, and
Sandler
,
R.
,
2002
, “
Pneumothorax Detection Using Pulmonary Acoustic Transmission Measurements
,”
Med. Biol. Eng. Comput.
,
40
(
5
), pp.
520
525
.
26.
Kabilan
,
S.
,
Lin
,
C.-L.
, and
Hoffman
,
E. A.
,
2007
, “
Characteristics of Airflow in a CT-Based Ovine Lung: A Numerical Study
,”
J. Appl. Physiol.
,
102
(4), pp.
1469
1482
.
27.
Mansy
,
H. A.
,
Azad
,
M. K.
,
McMurray
,
B.
,
Henry
,
B.
,
Royston
,
T.
, and
Sandler
,
R. H.
,
2015
, “
Investigating the Geometry of Pig Airways Using Computed Tomography
,”
SPIE Med. Imag.
,
9417
, p.
94172N
.
28.
Azad
,
M. K.
,
Mansy
,
H. A.
, and
Gamage
,
P. T.
,
2016
, “
Geometric Features of Pig Airways Using Computed Tomography
,”
Physiol. Rep.
,
4
, p.
e12995
.
29.
Dai
,
Z.
,
Peng
,
Y.
,
Henry
,
B. M.
,
Mansy
,
H. A.
,
Sandler
,
R. H.
, and
Royston
,
T. J.
,
2014
, “
A Comprehensive Computational Model of Sound Transmission Through the Porcine Lung
,”
J. Acoust. Soc. Am.
,
136
(3), pp.
1419
1429
.
30.
Peng
,
Y.
,
Dai
,
Z.
,
Mansy
,
H. A.
,
Henry
,
B. M.
,
Sandler
,
R. H.
,
Balk
,
R. A.
, and
Royston, T. J.
,
2016
, “
Sound Transmission in Porcine Thorax Through Airway Insonification
,”
Med. Biol. Eng. Comput.
,
54
(
4
), pp.
675
689
.
31.
Awadalla
,
M.
,
Miyawaki
,
S.
,
Alaiwa
,
M. H. A.
,
Adam
,
R. J.
,
Bouzek
,
D. C.
,
Michalski
,
A. S.
, Fuld, M. K.,
Reynolds, K. J.
,
Hoffman, E. A.
,
Lin, C.-L.
, and
Stoltz, D. A.
,
2014
, “
Early Airway Structural Changes in Cystic Fibrosis Pigs as a Determinant of Particle Distribution and Deposition
,”
Ann. Biomed. Eng.
,
42
(
4
), pp.
915
927
.
32.
van Ertbruggen
,
C.
,
Hirsch
,
C.
, and
Paiva
,
M.
,
2005
, “
Anatomically Based Three-Dimensional Model of Airways to Simulate Flow and Particle Transport Using Computational Fluid Dynamics
,”
J. Appl. Physiol.
,
98
(
3
), pp.
970
980
.
33.
Stapleton
,
K.-W.
,
Guentsch
,
E.
,
Hoskinson
,
M.
, and
Finlay
,
W.
,
2000
, “
On the Suitability of k–ε Turbulence Modeling for Aerosol Deposition in the Mouth and Throat: A Comparison With Experiment
,”
J. Aerosol. Sci.
,
31
(
6
), pp.
739
749
.
34.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
,
2004
, “
Airflow Structures and Nano-Particle Deposition in a Human Upper Airway Model
,”
J. Comput. Phys.
,
198
(
1
), pp.
178
210
.
35.
Hardin
,
J.
, and
Patterson
,
J.
,
1979
, “
Monitoring the State of the Human Airways by Analysis of Respiratory Sound
,”
Acta Astronaut.
,
6
(
9
), pp.
1137
1151
.
36.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
,
2002
, “
Transient Airflow Structures and Particle Transport in a Sequentially Branching Lung Airway Model
,”
Phys. Fluids
,
14
(
2
), pp.
862
880
.
37.
Fresconi
,
F. E.
, and
Prasad
,
A. K.
,
2007
, “
Secondary Velocity Fields in the Conducting Airways of the Human Lung
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
722
732
.
38.
Schroeder
,
A.
, and
Willert
,
C. E.
,
2008
,
Particle Image Velocimetry: New Developments and Recent Applications
, Vol.
112
,
Springer Science & Business Media
, Berlin.
39.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2010
, “
Airflow and Particle Transport in the Human Respiratory System
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
301
334
.
40.
Li
,
Z.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2007
, “
Simulation of Airflow Fields and Microparticle Deposition in Realistic Human Lung Airway Models—Part I: Airflow Patterns
,”
Eur. J. Mech.-B/Fluids
,
26
(
5
), pp.
632
649
.
41.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, Vol.
2
,
DCW Industries
,
La Canada, CA
.
42.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k–x Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.
43.
Ma
,
B.
, and
Lutchen
,
K. R.
,
2006
, “
An Anatomically Based Hybrid Computational Model of the Human Lung and Its Application to Low Frequency Oscillatory Mechanics
,”
Ann. Biomed. Eng.
,
34
(
11
), pp.
1691
704
.
44.
Wall
,
W. A.
, and
Rabczuk
,
T.
,
2008
, “
Fluid–Structure Interaction in Lower Airways of CT‐Based Lung Geometries
,”
Int. J. Numer. Methods Fluids
,
57
(
5
), pp.
653
675
.
45.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig, G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
Neuroimage
,
31
(3), pp.
1116
1128
.
46.
CD-adapco,
2017
, “Star-CCM+ User Manual,” CD-adapco, Melville, NY, accessed Nov. 17, 2017, http://www.cd-adapco.com/products/star-ccm/documentation
47.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Christopher
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
48.
Khalili, F
.,
Gamage. P. P. T
., and
Mansy
,
H. A.
,
2017
, “
Hemodynamics of a Bileaflet Mechanical Heart Valve With Different Levels of Dysfunction
,”
J. Appl. Biotechnol. Bioeng.
,
2
(5), p.
00044
.
49.
Eckelmann
,
H.
,
1974
, “
The Structure of the Viscous Sublayer and the Adjacent Wall Region in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
65
(
3
), pp.
439
459
.
50.
Ariff
,
M.
,
Salim
,
S. M.
, and
Cheah
,
S. C.
,
2009
, “
Wall y+ Approach for Dealing With Turbulent Flow Over a Surface Mounted Cube—Part 2: High Reynolds Number
,”
Seventh International Conference on CFD in the Minerals and Process Industries CSIRO
, Melbourne, Australia, Dec. 9–11, pp. 1–9.http://www.cfd.com.au/cfd_conf09/PDFs/142SAL.pdf
51.
Azad
,
M. K.
, and
Mansy
,
H. A.
,
2016
, “
Generation of Pig Airways Using Rules Developed From the Measurements of Physical Airways
,”
J. Bioeng. Biomed. Sci.
,
6
(4), p. 203.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330366/
52.
Degani
,
D.
,
Seginer
,
A.
, and
Levy
,
Y.
,
1990
, “
Graphical Visualization of Vortical Flows by Means of Helicity
,”
AIAA J.
,
28
(
8
), pp.
1347
1352
.
53.
Olson
,
D. E.
, and
Hammersley
,
J. R.
,
1985
, “
Mechanisms of Lung Sound Generation
,”
Semin. Respir. Med.
,
6
(3), pp.
171
179
.
54.
Pedley
,
T.
,
Schroter
,
R.
, and
Sudlow
,
M.
,
1970
, “
Energy Losses and Pressure Drop in Models of Human Airways
,”
Respir. Physiol.
,
9
(
3
), pp.
371
386
.
55.
Young
,
D. F.
,
Munson
,
B. R.
,
Okiishi
,
T. H.
, and
Huebsch
,
W. W.
,
2010
,
A Brief Introduction to Fluid Mechanics
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.