One particular complexity of coronary artery is the natural tapering of the vessel with proximal segments having larger caliber and distal tapering as the vessel get smaller. The natural tapering of a coronary artery often leads to proximal incomplete stent apposition (ISA). ISA alters coronary hemodynamics and creates pathological path to develop complications such as in-stent restenosis, and more worryingly, stent thrombosis (ST). By employing state-of-the-art computer-aided design software, generic stent hoops were virtually deployed in an idealized tapered coronary artery with decreasing malapposition distance. Pulsatile blood flow simulations were carried out using computational fluid dynamics (CFD) on these computer-aided design models. CFD results reveal unprecedented details in both spatial and temporal development of microrecirculation environments throughout the cardiac cycle (CC). Arterial tapering also introduces secondary microrecirculation. These primary and secondary microrecirculations provoke significant fluctuations in arterial wall shear stress (WSS). There has been a direct correlation with changes in WSS and the development of atherosclerosis. Further, the presence of these microrecirculations influence strongly on the local levels of blood viscosity in the vicinity of the malapposed stent struts. The observation of secondary microrecirculations and changes in blood rheology is believed to complement the wall (-based) shear stress, perhaps providing additional physical explanations for tissue accumulation near ISA detected from high resolution optical coherence tomography (OCT).

References

References
1.
Libby
,
P.
,
2013
, “
Mechanisms of Acute Coronary Syndromes and Their Implications for Therapy
,”
N. Engl. J. Med.
,
368
(
21
), pp.
2004
2013
.
2.
Räber
,
L.
,
Magro
,
M.
,
Stefanini
,
G. G.
,
Kalesan
,
B.
,
Van Domburg
,
R. T.
,
Onuma
,
Y.
,
Wenaweser
,
P.
,
Daemen
,
J.
,
Meier
,
B.
,
Jüni
,
P.
,
Serruys
,
P. W.
, and
Windecker
,
S.
,
2012
, “
Very Late Coronary Stent Thrombosis of a Newer-Generation Eerolimus-Eluting Stent Compared With Early-Generation Drug-Eluting Stents: A Prospective Cohort Study
,”
Circulation
,
125
(
9
), pp.
1110
1121
.
3.
Cook
,
S.
,
Wenaweser
,
P.
,
Togni
,
M.
,
Billinger
,
M.
,
Morger
,
C.
,
Seiler
,
C.
,
Vogel
,
R.
,
Hess
,
O.
,
Meier
,
B.
, and
Windecker
,
S.
,
2007
, “
Incomplete Stent Apposition and Very Late Stent Thrombosis After Drug-Eluting Stent Implantation
,”
Circulation
,
115
(
18
), pp.
2426
2434
.
4.
Foin
,
N.
,
Gutiérrez-Chico
,
J. L.
,
Nakatani
,
S.
,
Torii
,
R.
,
Bourantas
,
C. V.
,
Sen
,
S.
,
Nijjer
,
S.
,
Petraco
,
R.
,
Kousera
,
C.
,
Ghione
,
M.
,
Onuma
,
Y.
,
Garcia-Garcia
,
H. M.
,
Francis
,
D. P.
,
Wong
,
P.
,
Di Mario
,
C.
,
Davies
,
J. E.
, and
Serruys
,
P. W.
,
2014
, “
Incomplete Stent Apposition Causes High Shear Flow Disturbances and Delay in Neointimal Coverage as a Function of Strut to Wall Detachment Distance: Implications for the Management of Incomplete Stent Apposition
,”
Circ. Cardiovasc. Interventions
,
7
(
2
), pp.
180
189
.
5.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
,
2005
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Invest.
,
85
(
1
), pp.
9
23
.
6.
Thondapu
,
V.
,
Bourantas
,
C. V.
,
Foin
,
N.
,
Jang
,
I.-K.
,
Serruys
,
P. W.
, and
Barlis
,
P.
,
2017
, “
Biomechanical Stress in Coronary Atherosclerosis: Emerging Insights From Computational Modelling
,”
Eur. Heart J.
,
38
(
2
), pp.
81
92
.
7.
Prahl Wittberg
,
L.
,
Van Wyk
,
S.
,
Ruchs
,
L.
,
Gutmark
,
E.
,
Backeljauw
,
P.
, and
Gutmark-Little
,
I.
,
2016
, “
Effects of Aortic Irregularities on Blood Flow
,”
Biomech. Model. Mechanobiol.
,
15
(
2
), pp.
345
360
.
8.
Sherwood
,
J. M.
,
Kaliviotis
,
E.
,
Dusting
,
J.
, and
Balabani
,
S.
,
2014
, “
Hematocrit, Viscosity and Velocity Distributions of Aggregating and Non-Aggregating Blood in a Bifurcating Microchannel
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
259
273
.
9.
Chien
,
S.
,
Sung
,
L. A.
,
Kim
,
S.
,
Burke
,
A. M.
, and
Usami
,
S.
,
1977
, “
Determination of Aggregation Force in Rouleaux by Fluid Mechanical Technique
,”
Microvasc. Res.
,
13
(
3
), pp.
327
333
.
10.
Quemada
,
D.
,
1978
, “
Rheology of Concentrated Disperse Systems—Part III: General Features of the Proposed Non-Newtonian Model. Comparison With Experimental Data
,”
Rheol. Acta
,
17
(
6
), pp.
643
653
.
11.
Kolandaivelu
,
K.
,
Swaminathan
,
R.
,
Gibson
,
W.
,
Kolachalama
,
V.
,
Nguyen-Ehrenreich
,
K.
,
Giddings
,
V.
,
Coleman
,
L.
,
Wong
,
G.
, and
Edelman
,
E.
,
2011
, “
Stent Thrombogenicity Early in High-Risk Interventional Settings is Driven by Stent Design and Deployment and Protected by Polymer-Drug Coatings
,”
Circulation
,
123
(
13
), pp.
1400
1409
.
12.
Bark
,
D. L.
, and
Ku
,
D. N.
,
2010
, “
Wall Shear Over High Degree Stenoses Pertinent to Atherothrombosis
,”
J. Biomech.
,
43
(
15
), pp.
2970
2977
.
13.
Chen
,
W. X.
,
Poon
,
E. K. W.
,
Thondapu
,
V.
,
Hutchins
,
N.
,
Barlis
,
P.
, and
Ooi
,
A.
,
2017
, “
Haemodynamic Effects of Incomplete Stent Apposition in Curved Coronary Arteries
,”
J. Biomech.
,
63
, pp.
164
173
.
14.
van Wyk
,
S.
,
Wittberg
,
L. P.
,
Bulusu
,
K. V.
,
Fuchs
,
L.
, and
Plesniak
,
M. W.
,
2015
, “
Non-Newtonian Perspectives on Pulsatile Blood-Analog Flows in a 180 ° Curved Artery Model
,”
Phys. Fluids
,
27
(
7
), p.
71901
.
15.
Popel
,
A. S.
, and
Enden
,
G.
,
1993
, “
An Analytical Solution for Steady Flow of a Quemada Fluid in a Circular Tube
,”
Rheol. Acta
,
32
(
4
), pp.
422
426
.
16.
Barton
,
I. E.
,
1998
, “
Comparison of SIMPLE- and PISO-Type Algorithms for Transient Flows
,”
Int. J. Numer. Methods Fluids
,
26
(
4
), pp.
459
483
.
17.
Poon
,
E. K. W.
,
Barlis
,
P.
,
Moore
,
S.
,
Pan
,
W.-H.
,
Liu
,
Y.
,
Ye
,
Y.
,
Xue
,
Y.
,
Zhu
,
S. J.
, and
Ooi
,
A. S. H.
,
2014
, “
Numerical Investigations of the Haemodynamic Changes Associated With Stent Malapposition in an Idealised Coronary Artery
,”
J. Biomech.
,
47
(
12
), pp.
2843
2851
.
18.
Hayat
,
U.
,
Thondapu
,
V.
,
Poon
,
E.
,
Incani
,
A.
,
Raffel
,
C.
,
Walters
,
D.
, and
Barlis
,
P.
,
2015
, “
A Randomised Controlled Trial of Biolimus-Eluting and Everolimus-Eluting Stents: An Optical Coherence Tomography (OCT) Study
,”
Heart Lung Circ.
,
24
(Suppl. 3), p.
S258
.
19.
Chen
,
W. X.
,
Poon
,
E. K. W.
,
Hutchins
,
N.
,
Thondapu
,
V.
,
Barlis
,
P.
, and
Ooi
,
A.
,
2017
, “
Computational Fluid Dynamics Study of Common Stent Models Inside Idealised Curved Coronary Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
6
), pp.
671
681
.
20.
Beier
,
S.
,
Ormiston
,
J.
,
Webster
,
M.
,
Cater
,
J.
,
Norris
,
S.
,
Medrano-Gracia
,
P.
,
Young
,
A.
, and
Cowan
,
B.
,
2016
, “
Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations
,”
Ann. Biomed. Eng.
,
44
(
2
), pp.
315
329
.
21.
Medrano-Gracia
,
P.
,
Ormiston
,
J.
,
Webster
,
M.
,
Beier
,
S.
,
Ellis
,
C.
,
Wang
,
C.
,
Young
,
A. A.
, and
Cowan
,
B. R.
,
2014
, “
Construction of a Coronary Artery Atlas From CT Angiography
,”
Med. Image Comput. Comput. Assist. Intervention
,
17
(
Pt. 2
), pp.
513
520
.
22.
Davies
,
J. E.
,
Parker
,
K. H.
,
Francis
,
D. P.
,
Hughes
,
A. D.
, and
Mayet
,
J.
,
2008
, “
What is the Role of the Aorta in Directing Coronary Blood Flow?
,”
Heart
,
94
(
12
), pp.
1545
1547
.
23.
Tenekecioglu
,
E.
,
Poon
,
E. K. W.
,
Carlos
,
C.
,
Thondapu
,
V.
,
Torii
,
R.
,
Bourantas
,
C. V.
,
Zeng
,
Y.
,
Onuma
,
Y.
,
Ooi
,
A. S. H.
,
Serruys
,
P. W.
, and
Barlis
,
P.
,
2016
, “
The Nidus for Possible Thrombus Formation
,”
JACC Cardiovasc. Intervention
,
9
(
20
), pp.
2167
2168
.
24.
Berry
,
J.
,
Santamarina
,
A.
,
Moore
,
J. E.
,
Roychowdhury
,
S.
, and
Routh
,
W.
,
2000
, “
Experimental and Computational Flow Evaluation of Coronary Stents
,”
Ann. Biomed. Eng.
,
28
(
4
), pp.
386
398
.
25.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.
26.
Virchow
,
R.
,
1989
, “
As Based Upon Physiological and Pathological Histology
,”
Nutr. Rev.
,
47
(
1
), pp.
23
25
.
27.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
J. Am. Med. Assoc.
,
282
(
21
), pp.
2035
2042
.
28.
Foin
,
N.
,
Petraco
,
R.
,
Sen
,
S.
,
Nijjer
,
S.
, and
Davies
,
J. E.
,
2014
, “
Assessment of Lesion Functional Significance With Virtual FFR—Are We Going With the Flow?
,”
EuroIntervention
,
10
(
5
), pp.
535
538
.
29.
Thondapu
,
V.
,
Tenekecioglu
,
E.
,
Poon
,
E. K. W.
,
Collet
,
C.
,
Torii
,
R.
,
Bourantas
,
C. V.
,
Chin
,
C.
,
Sotomi
,
Y.
,
Jonker
,
J.
,
Dijkstra
,
J.
,
Revalor
,
E.
,
Gijsen
,
F.
,
Onuma
,
Y.
,
Ooi
,
A.
,
Barlis
,
P.
, and
Serruys
,
P. W.
,
2018
, “
Endothelial Shear Stress 5 Years After Implantation of a Coronary Bioresorbable Scaffold
,”
Eur. Heart J.
, in press.
30.
Holme
,
P. A.
,
Orvim
,
U.
,
Hamers
,
M. J.
,
Solum
,
N. O.
,
Brosstad
,
F. R.
,
Barstad
,
R. M.
, and
Sakariassen
,
K. S.
,
1997
, “
Shear-Induced Platelet Activation and Platelet Microparticle Formation at Blood Flow Conditions as in Arteries With a Severe Stenosis
,”
Arterioscler. Thromb. Vasc. Biol.
,
17
(
4
), pp.
646
653
.
31.
Davies
,
J. E.
,
Whinnett
,
Z. I.
,
Francis
,
D. P.
,
Manisty
,
C. H.
,
Aguado-Sierra
,
J.
,
Willson
,
K.
,
Foale
,
R. A.
,
Malik
,
I. S.
,
Hughes
,
A. D.
,
Parker
,
K. H.
, and
Mayet
,
J.
,
2006
, “
Evidence of a Dominant Backward-Propagating ‘Suction’ Wave Responsible for Diastolic Coronary Filling in Humans, Attenuated in Left Ventricular Hypertrophy
,”
Circulation
,
113
(
14
), pp.
1768
1778
.
32.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.
33.
Peacock
,
J. A.
,
1990
, “
An In Vivo Study of the Onset of Turbulence in the Sinus of Valsalva
,”
Circ. Res.
,
67
(
2
), pp.
448
460
.
34.
Liu
,
B.
,
Zheng
,
J.
,
Bach
,
R.
, and
Tang
,
D.
,
2015
, “
Influence of Model Boundary Conditions on Blood Flow Patterns in a Patient Specific Stenotic Right Coronary Artery
,”
Biomed. Eng. Online
,
14
(
Suppl. 1
), p.
S6
.
35.
Achaba
,
L.
,
Mahfouda
,
M.
, and
Benhadida
,
S.
,
2016
, “
Numerical Study of the Non-Newtonian Blood Flow in a Stenosed Artery Using Two Rheological Models
,”
Therm. Sci.
,
20
(
2
), pp.
449
460
.
You do not currently have access to this content.