The extracellular matrix provides macroscale structure to tissues and microscale guidance for cell contraction, adhesion, and migration. The matrix is composed of a network of fibers, which each deform by stretching, bending, and buckling. Whereas the mechanics has been well characterized in uniform shear and extension, the response to more general loading conditions remains less clear, because the associated displacement fields cannot be predicted a priori. Studies simulating contraction, such as due to a cell, have observed displacements that propagate over a long range, suggesting mechanisms such as reorientation of fibers toward directions of tensile force and nonlinearity due to buckling of fibers under compression. It remains unclear which of these two mechanisms produces the long-range displacements and how properties like fiber bending stiffness and fiber length affect the displacement field. Here, we simulate contraction of an inclusion within a fibrous network and fit the resulting radial displacements to ur ∼ rn where the power n quantifies the decay of displacements over distance, and a value of n less than that predicted by classical linear elasticity indicates displacements that propagate over a long range. We observed displacements to propagate over a longer range for greater contraction of the inclusion, for networks having longer fibers, and for networks with lower fiber bending stiffness. Contraction of the inclusion also caused fibers to reorient into the radial direction, but, surprisingly, the reorientation was minimally affected by bending stiffness. We conclude that both reorientation and nonlinearity are responsible for the long-range displacements.

References

References
1.
Discher
,
D. E.
,
Janmey
,
P.
, and
Wang
,
Y.-L.
,
2005
, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.
2.
Riching
,
K. M.
,
Cox
,
B. L.
,
Salick
,
M. R.
,
Pehlke
,
C.
,
Riching
,
A. S.
,
Ponik
,
S. M.
,
Bass
,
B. R.
,
Crone
,
W. C.
,
Jiang
,
Y.
,
Weaver
,
A. M.
,
Eliceiri, K. W.
, and
Keely, P. J.
,
2014
, “
3D Collagen Alignment Limits Protrusions to Enhance Breast Cancer Cell Persistence
,”
Biophys. J.
,
107
(
11
), pp.
2546
2558
.
3.
Provenzano
,
P. P.
,
Eliceiri
,
K. W.
,
Campbell
,
J. M.
,
Inman
,
D. R.
,
White
,
J. G.
, and
Keely
,
P. J.
,
2006
, “
Collagen Reorganization at the Tumor-Stromal Interface Facilitates Local Invasion
,”
BMC Med.
,
4
(
1
), p.
38
.
4.
Conklin
,
M. W.
,
Eickhoff
,
J. C.
,
Riching
,
K. M.
,
Pehlke
,
C. A.
,
Eliceiri
,
K. W.
,
Provenzano
,
P. P.
,
Friedl
,
A.
, and
Keely
,
P. J.
,
2011
, “
Aligned Collagen Is a Prognostic Signature for Survival in Human Breast Carcinoma
,”
Am. J. Pathol.
,
178
(
3
), pp.
1221
1232
.
5.
Ye
,
Q.
,
Zünd
,
G.
,
Benedikt
,
P.
,
Jockenhoevel
,
S.
,
Hoerstrup
,
S. P.
,
Sakyama
,
S.
,
Hubbell
,
J. A.
, and
Turina
,
M.
,
2000
, “
Fibrin Gel as a Three Dimensional Matrix in Cardiovascular Tissue Engineering
,”
Eur. J. Cardiothorac. Surg.
,
17
(
5
), pp.
587
591
.
6.
Boccafoschi
,
F.
,
Habermehl
,
J.
,
Vesentini
,
S.
, and
Mantovani
,
D.
,
2005
, “
Biological Performances of Collagen-Based Scaffolds for Vascular Tissue Engineering
,”
Biomaterials
,
26
(
35
), pp.
7410
7417
.
7.
Licup
,
A. J.
,
Munster
,
S.
,
Sharma
,
A.
,
Sheinman
,
M.
,
Jawerth
,
L. M.
,
Fabry
,
B.
,
Weitz
,
D. A.
, and
MacKintosh
,
F. C.
,
2015
, “
Stress Controls the Mechanics of Collagen Networks
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
31
), pp.
9573
9578
.
8.
Sharma
,
A.
,
Licup
,
A. J.
,
Jansen
,
K. A.
,
Rens
,
R.
,
Sheinman
,
M.
,
Koenderink
,
G. H.
, and
MacKintosh
,
F. C.
,
2016
, “
Strain-Controlled Criticality Governs the Nonlinear Mechanics of Fibre Networks
,”
Nat. Phys.
,
12
(
6
), pp.
584
587
.
9.
Vahabi
,
M.
,
Sharma
,
A.
,
Licup
,
A. J.
,
van Oosten
,
A. S.
,
Galie
,
P. A.
,
Janmey
,
P. A.
, and
MacKintosh
,
F. C.
,
2016
, “
Elasticity of Fibrous Networks Under Uniaxial Prestress
,”
Soft Matter
,
12
(
22
), pp.
5050
5060
.
10.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F. C.
,
2003
, “
Distinct Regimes of Elastic Response and Deformation Modes of Cross-Linked Cytoskeletal and Semiflexible Polymer Networks
,”
Phys. Rev. E
,
68
(
6
), p.
061907
.
11.
Wilhelm
,
J.
, and
Frey
,
E.
,
2003
, “
Elasticity of Stiff Polymer Networks
,”
Phys. Rev. Lett.
,
91
(
10
), p.
108103
.
12.
Onck
,
P. R.
,
Koeman
,
T.
,
van Dillen
,
T.
, and
van der Giessen
,
E.
,
2005
, “
Alternative Explanation of Stiffening in Cross-Linked Semiflexible Networks
,”
Phys. Rev. Lett.
,
95
(
17
), p.
178102
.
13.
Heussinger
,
C.
, and
Frey
,
E.
,
2007
, “
Force Distributions and Force Chains in Random Stiff Fiber Networks
,”
Eur. Phys. J. E
,
24
(
1
), pp.
47
53
.
14.
Hatami-Marbini
,
H.
, and
Picu
,
R. C.
,
2008
, “
Scaling of Nonaffine Deformation in Random Semiflexible Fiber Networks
,”
Phys. Rev. E
,
77
(
6
), p.
062103
.
15.
Stein
,
A. M.
,
Vader
,
D. A.
,
Weitz
,
D. A.
, and
Sander
,
L. M.
,
2011
, “
The Micromechanics of Three-Dimensional Collagen-I Gels
,”
Complexity
,
16
(
4
), pp.
22
28
.
16.
Fung
,
Y. C.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media
,
New York
.
17.
Janmey
,
P. A.
,
McCormick
,
M. E.
,
Rammensee
,
S.
,
Leight
,
J. L.
,
Georges
,
P. C.
, and
MacKintosh
,
F. C.
,
2007
, “
Negative Normal Stress in Semiflexible Biopolymer Gels
,”
Nat. Mater.
,
6
(
1
), pp.
48
51
.
18.
Conti
,
E.
, and
MacKintosh
,
F.
,
2009
, “
Cross-Linked Networks of Stiff Filaments Exhibit Negative Normal Stress
,”
Phys. Rev. Lett.
,
102
(
8
), p. 088102.https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.088102
19.
Poynting
,
J. H.
,
1909
, “
On Pressure Perpendicular to the Shear Planes in Finite Pure Shears, and on the Lengthening of Loaded Wires When Twisted
,”
Proc. R. Soc. London
,
82
(
557
), pp.
546
559
.
20.
Notbohm
,
J.
,
Lesman
,
A.
,
Rosakis
,
P.
,
Tirrell
,
D. A.
, and
Ravichandran
,
G.
,
2015
, “
Microbuckling of Fibrin Provides a Mechanism for Cell Mechanosensing
,”
J. R. Soc. Interface
,
12
(
108
), p.
20150320
.
21.
Rosakis
,
P.
,
Notbohm
,
J.
, and
Ravichandran
,
G.
,
2015
, “
A Model for Compression-Weakening Materials and the Elastic Fields Due to Contractile Cells
,”
J. Mech. Phys. Solids
,
85
, pp.
16
32
.
22.
Kim
,
O. V.
,
Litvinov
,
R. I.
,
Weisel
,
J. W.
, and
Alber
,
M. S.
,
2014
, “
Structural Basis for the Nonlinear Mechanics of Fibrin Networks Under Compression
,”
Biomaterials
,
35
(
25
), pp.
6739
6749
.
23.
van Oosten
,
A. S.
,
Vahabi
,
M.
,
Licup
,
A. J.
,
Sharma
,
A.
,
Galie
,
P. A.
,
MacKintosh
,
F. C.
, and
Janmey
,
P. A.
,
2016
, “
Uncoupling Shear and Uniaxial Elastic Moduli of Semiflexible Biopolymer Networks: Compression-Softening and Stretch-Stiffening
,”
Sci. Rep.
,
6
, p.
19270
.
24.
Liang
,
L.
,
Jones
,
C.
,
Chen
,
S.
,
Sun
,
B.
, and
Jiao
,
Y.
,
2016
, “
Heterogeneous Force Network in 3D Cellularized Collagen Networks
,”
Phys. Biol.
,
13
(
6
), p.
066001
.
25.
Rudnicki
,
M. S.
,
Cirka
,
H. A.
,
Aghvami
,
M.
,
Sander
,
E. A.
,
Wen
,
Q.
, and
Billiar
,
K. L.
,
2013
, “
Nonlinear Strain Stiffening Is Not Sufficient to Explain How Far Cells Can Feel on Fibrous Protein Gels
,”
Biophys. J.
,
105
(
1
), pp.
11
20
.
26.
Aghvami
,
M.
,
Billiar
,
K. L.
, and
Sander
,
E. A.
,
2016
, “
Fiber Network Models Predict Enhanced Cell Mechanosensing on Fibrous Gels
,”
ASME J. Biomech. Eng.
,
138
(
10
), p.
101006
.
27.
Wang
,
H.
,
Abhilash
,
A. S.
,
Chen
,
C. S.
,
Wells
,
R. G.
, and
Shenoy
,
V. B.
,
2014
, “
Long-Range Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers
,”
Biophys. J.
,
107
(
11
), pp.
2592
2603
.
28.
Abhilash
,
A. S.
,
Baker
,
B. M.
,
Trappmann
,
B.
,
Chen
,
C. S.
, and
Shenoy
,
V. B.
,
2014
, “
Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions From Discrete Fiber Network Simulations
,”
Biophys. J.
,
107
(
8
), pp.
1829
1840
.
29.
Winer
,
J. P.
,
Oake
,
S.
, and
Janmey
,
P. A.
,
2009
, “
Non-Linear Elasticity of Extracellular Matrices Enables Contractile Cells to Communicate Local Position and Orientation
,”
PloS One
,
4
(
7
), p.
e6382
.
30.
Burkel
,
B.
, and
Notbohm
,
J.
,
2017
, “
Mechanical Response of Collagen Networks to Nonuniform Microscale Loads
,”
Soft Matter
,
13
(34), p.
5749
.
31.
Ronceray
,
P.
,
Broedersz
,
C. P.
, and
Lenz
,
M.
,
2016
, “
Fiber Networks Amplify Active Stress
,”
Proc. Natl. Acad. Sci.
,
113
(
11
), pp. 2827–2832.http://www.pnas.org/content/113/11/2827.abstract
32.
Eshelby
,
J. D.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London A
,
252
(1271), pp.
561
569
.
33.
Lindstrom
,
S. B.
,
Vader
,
D. A.
,
Kulachenko
,
A.
, and
Weitz
,
D. A.
,
2010
, “
Biopolymer Network Geometries: Characterization, Regeneration, and Elastic Properties
,”
Phys. Rev. E
,
82
(
5
), p.
051905
.
34.
Lindström
,
S. B.
,
Kulachenko
,
A.
,
Jawerth
,
L. M.
, and
Vader
,
D. A.
,
2013
, “
Finite-Strain, Finite-Size Mechanics of Rigidly Cross-Linked Biopolymer Networks
,”
Soft Matter
,
9
(
30
), p.
7302
.
35.
Xu
,
X.
, and
Safran
,
S. A.
,
2015
, “
Nonlinearities of Biopolymer Gels Increase the Range of Force Transmission
,”
Phys. Rev. E
,
92
(
3
), p.
032728
.
36.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F. C.
,
2005
, “
Mechanical Response of Semiflexible Networks to Localized Perturbations
,”
Phys. Rev. E
,
72
(
6
), p.
061914
.
37.
Kang
,
H.
,
Wen
,
Q.
,
Janmey
,
P. A.
,
Tang
,
J. X.
,
Conti
,
E.
, and
MacKintosh
,
F. C.
,
2009
, “
Nonlinear Elasticity of Stiff Filament Networks: Strain Stiffening, Negative Normal Stress, and Filament Alignment in Fibrin Gels
,”
J. Phys. Chem. B
,
113
(
12
), pp.
3799
3805
.
38.
Broedersz
,
C. P.
,
Mao
,
X. M.
,
Lubensky
,
T. C.
, and
MacKintosh
,
F. C.
,
2011
, “
Criticality and Isostaticity in Fibre Networks
,”
Nat. Phys.
,
7
(
12
), pp.
983
988
.
39.
Broedersz
,
C. P.
,
Sheinman
,
M.
, and
MacKintosh
,
F. C.
,
2012
, “
Filament-Length-Controlled Elasticity in 3D Fiber Networks
,”
Phys. Rev. Lett.
,
108
(
7
), p.
078102
.
40.
Münster
,
S.
,
Jawerth
,
L. M.
,
Leslie
,
B. A.
,
Weitz
,
J. I.
,
Fabry
,
B.
, and
Weitz
,
D. A.
,
2013
, “
Strain History Dependence of the Nonlinear Stress Response of Fibrin and Collagen Networks
,”
Proc. Natl. Acad. Sci.
,
110
(
30
), pp.
12197
12202
.
41.
Humphries
,
D. L.
,
Grogan
,
J. A.
, and
Gaffney
,
E. A.
,
2017
, “
Mechanical Cell–Cell Communication in Fibrous Networks: The Importance of Network Geometry
,”
Bull. Math. Biol.
,
79
(
3
), pp.
498
524
.
42.
Jones
,
C. A.
,
Cibula
,
M.
,
Feng
,
J.
,
Krnacik
,
E. A.
,
McIntyre
,
D. H.
,
Levine
,
H.
, and
Sun
,
B.
,
2015
, “
Micromechanics of Cellularized Biopolymer Networks
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
37
), pp.
E5117
E5122
.
43.
Wood
,
G.
, and
Keech
,
M. K.
,
1960
, “
The Formation of Fibrils From Collagen Solutions—1: The Effect of Experimental Conditions: Kinetic and Electron-Microscope Studies
,”
Biochem. J.
,
75
(
3
), p.
588
.
44.
Shokef
,
Y.
, and
Safran
,
S. A.
,
2012
, “
Scaling Laws for the Response of Nonlinear Elastic Media With Implications for Cell Mechanics
,”
Phys. Rev. Lett.
,
108
(
17
), p.
178103
.
45.
Hatami-Marbini
,
H.
, and
Picu
,
R. C.
,
2009
, “
Heterogeneous Long-Range Correlated Deformation of Semiflexible Random Fiber Networks
,”
Phys. Rev. E
,
80
(
4
), p.
046703
.
46.
Chandran
,
P. L.
, and
Barocas
,
V. H.
,
2006
, “
Affine Versus Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior
,”
ASME J. Biomech. Eng.
,
128
(
2
), pp.
259
270
.
47.
Kim
,
O. V.
,
Liang
,
X.
,
Litvinov
,
R. I.
,
Weisel
,
J. W.
,
Alber
,
M. S.
, and
Purohit
,
P. K.
,
2016
, “
Foam-Like Compression Behavior of Fibrin Networks
,”
Biomech. Model. Mechanobiol.
,
15
(
1
), pp.
213
228
.
48.
Ma
,
X.
,
Schickel
,
M. E.
,
Stevenson
,
M. D.
,
Sarang-Sieminski
,
A. L.
,
Gooch
,
K. J.
,
Ghadiali
,
S. N.
, and
Hart
,
R. T.
,
2013
, “
Fibers in the Extracellular Matrix Enable Long-Range Stress Transmission Between Cells
,”
Biophys. J.
,
104
(
7
), pp.
1410
1418
.
You do not currently have access to this content.