Previous two-dimensional (2D) studies have shown that there is a spectrum of carpal mechanics that varies between row-type motion and column-type motion as a function of wrist laxity. More recent three-dimensional (3D) studies have suggested instead that carpal bone motion is consistent across individuals. The purpose of this study was to use 3D methods to determine whether carpal kinematics differ between stiffer wrists and wrists with higher laxity. Wrist laxity was quantified using a goniometer in ten subjects by measuring passive wrist flexion–extension (FE) range of motion (ROM). In vivo kinematics of subjects' scaphoid and lunate with respect to the radius were computed from computed tomography (CT) volume images in wrist radial and ulnar deviation positions. Scaphoid and lunate motion was defined as “column-type” if the bones flexed and extended during wrist radial–ulnar deviation (RUD), and “row-type” if the bones radial–ulnar deviated during wrist RUD. We found that through wrist RUD, the scaphoid primarily flexed and extended, but the scaphoids of subjects with decreased laxity had a larger component of RUD (R2 = 0.48, P < 0.05). We also determined that the posture of the scaphoid in the neutral wrist position predicts wrist radial deviation (RD) ROM (R2 = 0.46, P < 0.05). These results suggest that ligament laxity plays a role in affecting carpal bone motion of the proximal row throughout radial and ulnar deviation motions; however, other factors such as bone position may also affect motion. By developing a better understanding of normal carpal kinematics and how they are affected, this will help physicians provide patient-specific approaches to different wrist pathologies.

References

References
1.
Navarro
,
A.
,
1921
, “
Luxaciones Del Carpo
,”
An. Fac. Med.
,
6
, pp.
113
141
.
2.
Taleisnik
,
J.
,
1976
, “
The Ligaments of the Wrist
,”
J. Hand Surg. Am.
,
1
(2), pp.
110
118
.
3.
Lichtman
,
D. M.
,
Schneider
,
J. R.
,
Swafford
,
A. R.
, and
Mack
,
G. R.
,
1981
, “
Ulnar Midcarpal Instability-Clinical and Laboratory Analysis
,”
J. Hand Surg. Am.
,
6
(5), pp.
515
523
.
4.
Weber
,
E. R.
,
1984
, “
Concepts Governing the Rotational Shift of the Intercalated Segment of the Carpus
,”
Orthop. Clin. North Am.
,
15
(
2
), pp.
193
207
.
5.
Craigen
,
M. A. C.
, and
Stanley
,
J. K.
,
1995
, “
Wrist Kinematics: Row, Column or Both?
,”
J. Hand Surg. Br. Eur. Vol.
,
20
(
2
), pp.
165
170
.
6.
Garcia-Elias
,
M.
,
Ribe
,
M.
,
Rodriguez
,
J.
,
Cots
,
M.
, and
Casas
,
J.
,
1995
, “
Influence of Joint Laxity on Scaphoid Kinematics
,”
J. Hand Surg. Br.
,
20
(3), pp.
379
382
.
7.
Moojen
,
T. M.
,
Snel
,
J. G.
,
Ritt
,
M. J. P. F.
,
Venema
,
H. W.
,
Kauer
,
J. M. G.
, and
Bos
,
K. E.
,
2002
, “
Scaphoid Kinematics In Vivo
,”
J. Hand Surg.
,
27
(
6
), pp.
1003
1010
.
8.
Crisco
,
J. J.
,
Coburn
,
J. C.
,
Moore
,
D. C.
,
Akelman
,
E.
,
Weiss
,
A. P.
, and
Wolfe
,
S. W.
,
2005
, “
In Vivo Radiocarpal Kinematics and the Dart Thrower's Motion
,”
J. Bone Jt. Surg. Am.
,
87
(
12
), pp.
2729
2740
.
9.
Minamikawa
,
Y.
,
Peimer
,
C. A.
,
Yamaguchi
,
T.
,
Medige
,
J.
, and
Sherwin
,
F. S.
, 1992, “
Ideal Scaphoid Angle for Intercarpal Arthrodesis
,”
J. Hand Surg.
,
17
(
2
), pp.
370
375
.
10.
Rainbow
,
M. J.
,
Kamal
,
R. N.
,
Moore
,
D. C.
,
Akelman
,
E.
,
Wolfe
,
S. W.
, and
Crisco
,
J. J.
,
2015
, “
Subject-Specific Carpal Ligament Elongation in Extreme Positions, Grip, and the Dart Thrower's Motion
,”
ASME J. Biomech. Eng.
,
137
(
11
), p.
111006
.
11.
Rainbow
,
M. J.
,
Kamal
,
R. N.
,
Leventhal
,
E.
,
Akelman
,
E.
,
Moore
,
D. C.
,
Wolfe
,
S. W.
, and
Crisco
,
J. J.
,
2013
, “
In Vivo Kinematics of the Scaphoid, Lunate, Capitate, and Third Metacarpal in Extreme Wrist Flexion and Extension
,”
J. Hand Surg.
,
38
(
2
), pp.
278
288
.
12.
Beighton
,
P.
, and
Horan
,
F.
,
1969
, “
Orthopaedic Aspects of the Ehlers-Danlos Syndrome
,”
J. Bone Jt. Surg. Br.
,
51
(
3
), pp.
444
453
.
13.
Eberly
,
D.
,
Lancaster
,
J.
, and
Alyassin
,
A.
,
1991
, “
On Gray Scale Image Measurements: II. Surface Area and Volume
,”
CVGIP Graph. Models Image Process.
,
53
(6), pp.
550
562
.
14.
Crisco
,
J. J.
, and
McGovern
,
R. D.
,
1997
, “
Efficient Calculation of Mass Moments of Inertia for Segmented Homogeneous Three-Dimensional Objects
,”
J. Biomech.
,
31
(
1
), pp.
97
101
.
15.
Crisco
,
J. J.
,
McGovern
,
R. D.
, and
Wolfe
,
S. W.
,
1999
, “
Noninvasive Technique for Measuring In Vivo Three-Dimensional Carpal Bone Kinematics
,”
J. Orthop. Res. Off. Publ. Orthop. Res. Soc.
,
17
(
1
), pp.
96
100
.
16.
Neu
,
C. P.
,
McGovern
,
R. D.
, and
Crisco
,
J. J.
,
2000
, “
Kinematic Accuracy of Three Surface Registration Methods in a Three-Dimensional Wrist Bone Study
,”
ASME J. Biomech. Eng.
,
122
(
5
), pp.
528
533
.
17.
Coburn
,
J. C.
,
Upal
,
M. A.
, and
Crisco
,
J. J.
,
2007
, “
Coordinate Systems for the Carpal Bones of the Wrist
,”
J. Biomech.
,
40
(
1
), pp.
203
209
.
18.
Panjabi
,
M.
, and
White
,
A. A.
,
1971
, “
A Mathematical Approach for Three-Dimensional Analysis of the Mechanics of the Spine
,”
J. Biomech.
,
4
(
3
), pp.
203
211
.
19.
Panjabi
,
M. M.
,
Krag
,
M. H.
, and
Goel
,
V. K.
,
1981
, “
A Technique for Measurement and Description of Three-Dimensional Six Degree-of-Freedom Motion of a Body Joint With an Application to the Human Spine
,”
J. Biomech.
,
14
(
7
), pp.
447
460
.
20.
Spoor
,
C. W.
,
1980
, “
Rigid Body Motion Calculated From Spatial Co-Ordinates of Markers
,”
J. Biomech.
,
13
(
4
), pp.
391
393
.
21.
Coburn
,
J.
, and
Crisco
,
J. J.
,
2005
, “
Interpolating Three-Dimensional Kinematic Data Using Quaternion Splines and Hermite Curves
,”
ASME J. Biomech. Eng.
,
127
(2), pp.
311
317
.
22.
Lloyd
,
S.
,
1982
, “
Least Squares Quantization in PCM
,”
IEEE Trans. Inf. Theory
,
28
(
2
), pp.
129
137
.
23.
Aizawa
,
J.
,
Masuda
,
T.
,
Hyodo
,
K.
,
Jinno
,
T.
,
Yagishita
,
K.
,
Nakamaru
,
K.
,
Koyama
,
T.
, and
Morita
,
S.
,
2013
, “
Ranges of Active Joint Motion for the Shoulder, Elbow, and Wrist in Healthy Adults
,”
Disability Rehabil.
,
35
(
16
), pp.
1342
1349
.
24.
Wigderowitz
,
C. A.
,
Scott
,
I.
,
Jariwala
,
A.
,
Arnold
,
G. P.
, and
Abboud
,
R. J.
,
2007
, “
Adapting the Fastrak® System for Three-Dimensional Measurement of the Motion of the Wrist
,”
J. Hand Surg. Eur.
,
32
(
6
), pp.
700
704
.
25.
Ryu
,
J. Y.
,
Cooney
,
W. P.
, III
,
Askew
,
L. J.
,
An
,
K. N.
, and
Chao
,
E. Y.
,
1991
, “
Functional Ranges of Motion of the Wrist Joint
,”
J. Hand Surg.
,
16
(
3
), pp.
409
419
.
26.
van Andel
,
C. J.
,
Roescher
,
W. B. M.
,
Tromp
,
M. F.
,
Ritt
,
M. J. P. F.
,
Strackee
,
S. D.
, and
Veeger
,
D. H. E. J.
, 2008, “
Quantification of Wrist Joint Laxity
,”
J. Hand Surg.
,
33
(
5
), pp.
667
674
.
27.
Short
,
W. H.
,
Werner
,
F. W.
,
Fortino
,
M. D.
,
Palmer
,
A. K.
, and
Mann
,
K. A.
, 1995, “
A Dynamic Biomechanical Study of Scapholunate Ligament Sectioning
,”
J. Hand Surg.
,
20
(
6
), pp.
986
999
.
You do not currently have access to this content.