Accurate cap thickness and stress/strain quantifications are of fundamental importance for vulnerable plaque research. Virtual histology intravascular ultrasound (VH-IVUS) sets cap thickness to zero when cap is under resolution limit and IVUS does not see it. An innovative modeling approach combining IVUS and optical coherence tomography (OCT) is introduced for cap thickness quantification and more accurate cap stress/strain calculations. In vivo IVUS and OCT coronary plaque data were acquired with informed consent obtained. IVUS and OCT images were merged to form the IVUS + OCT data set, with biplane angiography providing three-dimensional (3D) vessel curvature. For components where VH-IVUS set zero cap thickness (i.e., no cap), a cap was added with minimum cap thickness set as 50 and 180 μm to generate IVUS50 and IVUS180 data sets for model construction, respectively. 3D fluid–structure interaction (FSI) models based on IVUS + OCT, IVUS50, and IVUS180 data sets were constructed to investigate cap thickness impact on stress/strain calculations. Compared to IVUS + OCT, IVUS50 underestimated mean cap thickness (27 slices) by 34.5%, overestimated mean cap stress by 45.8%, (96.4 versus 66.1 kPa). IVUS50 maximum cap stress was 59.2% higher than that from IVUS + OCT model (564.2 versus 354.5 kPa). Differences between IVUS and IVUS + OCT models for cap strain and flow shear stress (FSS) were modest (cap strain <12%; FSS <6%). IVUS + OCT data and models could provide more accurate cap thickness and stress/strain calculations which will serve as basis for further plaque investigations.

References

References
1.
Gijsen
,
F. J. H.
, and
Migliavacca
,
F.
,
2014
, “
Plaque Mechanics
,”
J. Biomech.
,
47
(
4
), pp.
763
764
.
2.
Holzapfel
,
G. A.
,
Mulvihill
,
J. J.
,
Cunnane
,
E. M.
, and
Walsh
,
M. T.
,
2014
, “
Computational Approaches for Analyzing the Mechanics of Atherosclerotic Plaques: A Review
,”
J. Biomech.
,
47
(
4
), pp.
859
869
.
3.
Friedman
,
M. H.
,
Krams
,
R.
, and
Chandran
,
K. B.
,
2010
, “
Flow Interactions With Cells and Tissues: Cardiovascular Flows and Fluid-Structure Interactions
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
1178
1187
.
4.
Tang
,
D.
,
Kamm
,
R. D.
,
Yang
,
C.
,
Zheng
,
J.
,
Canton
,
G.
, and
Bach
,
R. G.
,
2014
, “
Image-Based Modeling for Better Understanding and Assessment of Atherosclerotic Plaque Progression and Vulnerability: Data, Modeling, Validation, Uncertainty and Predictions
,”
J. Biomech.
,
47
(
4
), pp.
834
846
.
5.
Cardoso
,
L.
, and
Weinbaum
,
S.
,
2014
, “
Changing Views of the Biomechanics of Vulnerable Plaque Rupture: A Review
,”
Ann. Biomed. Eng.
,
42
(
2
), pp.
415
431
.
6.
Mintz
,
G. S.
,
Nissen
,
S. E.
,
Anderson
,
W. D.
,
Bailey
,
S. R.
,
Erbel
,
R.
,
Fitzgerald
,
P. J.
,
Pinto
,
F. J.
,
Rosenfield
,
K.
,
Siegel
,
R. J.
,
Tuzcu
,
E. M.
, and
Yock
,
P. G.
,
2001
, “
American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS): A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents
,”
J. Am. Coll. Cardiol.
,
37
(
5
), pp.
1478
1492
.
7.
Nair
,
A.
,
Kuban
,
B. D.
,
Tuzcu
,
E. M.
,
Schoenhagen
,
P.
,
Nissen
,
S. E.
, and
Vince
,
D. G.
,
2002
, “
Coronary Plaque Classification With Intravascular Ultrasound Radiofrequency Data Analysis
,”
Circulation
,
106
(
17
), pp.
2200
2206
.
8.
Stone
,
G. W.
,
Maehara
,
A.
,
Lansky
,
A. J.
,
de Bruyne
,
B.
,
Cristea
,
E.
,
Mintz
,
G. S.
,
Mehran
,
R.
,
McPherson
,
J.
,
Farhat
,
N.
,
Marso
,
S. P.
,
Parise
,
H.
,
Templin
,
B.
,
White
,
R.
,
Zhang
,
Z.
, and
Serruys
,
P. W.
,
2011
, “
A Prospective Natural-History Study of Coronary Atherosclerosis
,”
N. Engl. J. Med.
,
364
(
3
), pp.
226
235
.
9.
Stone
,
P. H.
,
Saito
,
S.
,
Takahashi
,
S.
,
Makita
,
Y.
,
Nakamura
,
S.
,
Kawasaki
,
T.
,
Takahashi
,
A.
,
Katsuki
,
T.
,
Nakamura
,
S.
,
Namiki
,
A.
,
Hirohata
,
A.
,
Matsumura
,
T.
,
Yamazaki
,
S.
,
Yokoi
,
H.
,
Tanaka
,
S.
,
Otsuji
,
S.
,
Yoshimach
,
F.
,
Honye
,
J.
,
Harwood
,
D.
,
Reitman
,
M.
,
Coskun
,
A. U.
,
Papafaklis
,
M. I.
, and
Feldman
,
C. L.
,
2012
, “
Prediction of Progression of Coronary Artery Disease and Clinical Outcomes Using Vascular Profiling of Endothelial Shear Stress and Arterial Plaque Characteristics: The Prediction Study
,”
Circulation
,
126
(
2
), pp.
172
181
.
10.
Virmani
,
R.
,
Kolodgie
,
F. D.
,
Burke
,
A. P.
,
Farb
,
A.
, and
Schwartz
,
S. M.
,
2000
, “
Lessons From Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions
,”
Arterioscler. Thromb. Vasc. Biol.
,
20
(
5
), pp.
1262
1275
.
11.
Virmani
,
R.
,
Ladich
,
E. R.
,
Burke
,
A. P.
, and
Kolodgie
,
F. D.
,
2006
, “
Histopathology of Carotid Atherosclerotic Disease
,”
Neurosurgery
,
59
(
5
), p.
S3-13
.https://www.ncbi.nlm.nih.gov/pubmed/17053606
12.
Bourantas
,
C. V.
,
Garcia-Garcia
,
H. M.
,
Farooq
,
V.
,
Maehara
,
A.
,
Xu
,
K.
,
Généreux
,
P.
,
Diletti
,
R.
,
Muramatsu
,
T.
,
Fahy
,
M.
,
Weisz
,
G.
,
Stone
,
G. W.
, and
Serruys
,
P. W.
,
2013
, “
Clinical and Angiographic Characteristics of Patients Likely to Have Vulnerable Plaques: Analysis From the Prospect Study
,”
JACC: Cardiovasc. Imaging
,
6
(
12
), pp.
1263
1272
.
13.
Brown
,
A. J.
,
Obaid
,
D. R.
,
Costopoulos
,
C.
,
Parker
,
R. A.
,
Calvert
,
P. A.
,
Teng
,
Z.
,
Hoole
,
S. P.
,
West
,
N. E.
,
Goddard
,
M.
, and
Bennett
,
M. R.
,
2015
, “
Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma
,”
Circ. Cardiovasc. Imaging
,
8
(
10
), p.
e003487
.https://www.ncbi.nlm.nih.gov/pubmed/26429760
14.
Maehara
,
A.
,
Mintz
,
G. S.
, and
Stone
,
G. W.
,
2013
, “
OCT Versus IVUS: Accuracy Versus Clinical Utility
,”
JACC: Cardiovasc. Imaging
,
6
(
10
), pp.
1105
1107
.
15.
Mintz
,
G. S.
,
2016
, “
Understanding Why and When Optical Coherence Tomography Does Not Detect Vulnerable Plaques—Is it Important?
,”
Circ. Cardiovasc. Interventions.
,
9
(
7
), p.
e004144
.
16.
Mintz
,
G. S.
,
2016
, “
Vulnerable Plaque Detection: When OCT is Not Enough
,”
JACC: Cardiovasc. Imaging.
,
9
(
2
), pp.
173
175
.
17.
Tearney
,
G. J.
,
Regar
,
E.
,
Akasaka
,
T.
,
Adriaenssens
,
T.
,
Barlis
,
P.
,
Bezerra
,
H. G.
,
Bouma
,
B.
,
Bruining
,
N.
,
Cho
,
J. M.
,
Chowdhary
,
S.
, and
Costa
,
M. A.
,
2012
, “
Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies: A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation
,”
J. Am. Coll. Cardiol.
,
59
(
12
), pp.
1058
1072
.
18.
Raber
,
L.
,
Heo
,
J. H.
,
Radu
,
M. D.
,
Garcia-Garcia
,
H. M.
,
Stefanini
,
G. G.
,
Moschovitis
,
A.
,
Dijkstra
,
J.
,
Kelbaek
,
H.
,
Windecker
,
S.
, and
Serruys
,
P. W.
,
2012
, “
Offline Fusion of Co-Registered Intravascular Ultrasound and Frequency Domain Optical Coherence Tomography Images for the Analysis of Human Atherosclerotic Plaques
,”
EuroIntervention
,
8
(
1
), pp.
98
108
.
19.
Karanasos
,
A.
,
Schuurbiers
,
J. C.
,
Garcia-Garcia
,
H. M.
,
Simsek
,
C.
,
Onuma
,
Y.
,
Serruys
,
P. W.
,
Zijlstra
,
F.
,
van Geuns
,
R. J.
,
Regar
,
E.
, and
Wentzel
,
J. J.
,
2015
, “
Association of Wall Shear Stress With Long-Term Vascular Healing Response Following Bioresorbable Vascular Scaffold Implantation
,”
Int. J. Cardiol.
,
191
, pp.
279
283
.
20.
Bourantas
,
C. V.
,
Jaffer
,
F. A.
,
Gijsen
,
F. J.
,
van Soest
,
G.
,
Madden
,
S. P.
,
Courtney
,
B. K.
,
Fard
,
A. M.
,
Tenekecioglu
,
E.
,
Zeng
,
Y.
,
van der Steen
,
A. F.
, and
Emelianov
,
S.
,
2016
, “
Hybrid Intravascular Imaging: Recent Advances, Technical Considerations, and Current Applications in the Study of Plaque Pathophysiology
,”
Eur. Heart J.
,
38
(
6
), pp.
400
412
.https://www.ncbi.nlm.nih.gov/pubmed/27118197
21.
Hung
,
O. Y.
,
Molony
,
D.
,
Corban
,
M. T.
,
Rasoul-Arzrumly
,
E.
,
Maynard
,
C.
,
Eshtehardi
,
P.
,
Dhawan
,
S.
,
Timmins
,
L. H.
,
Piccinelli
,
M.
,
Ahn
,
S. G.
, and
Gogas
,
B. D.
,
2016
, “
Comprehensive Assessment of Coronary Plaque Progression With Advanced Intravascular Imaging, Physiological Measures, and Wall Shear Stress: A Pilot Double-Blinded Randomized Controlled Clinical Trial of Nebivolol Versus Atenolol in Nonobstructive Coronary Artery Disease
,”
J. Am. Heart. Assoc.
,
5
(
1
), p.
e002764
.
22.
Samady
,
H.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Maynard
,
C.
,
Timmins
,
L. H.
,
Quyyumi
,
A. A.
, and
Giddens
,
D. P.
,
2011
, “
Coronary Artery Wall Shear Stress is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease
,”
Circulation
,
124
(
7
), pp.
779
788
.
23.
Yang
,
C.
,
Bach
,
R.
,
Zheng
,
J.
,
Naqa
,
I. E.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K. L.
, and
Tang
,
D.
,
2009
, “
In Vivo IVUS-Based 3D Fluid Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis
,”
IEEE Trans. Biomed. Eng.
,
56
(
10
), pp.
2420
2428
.
24.
Molony
,
D. S.
,
Timmins
,
L. H.
,
Rasoul-Arzrumly
,
E.
,
Samady
,
H.
, and
Giddens
,
D. P.
,
2016
, “
Evaluation of a Framework for the Co-Registration of Intravascular Ultrasound and Optical Coherence Tomography Coronary Artery Pullbacks
,”
J. Biomech.
,
49
(
16
), pp.
4048
4056
.
25.
Wang
,
Z.
,
Chamie
,
D.
,
Bezerra
,
H. G.
,
Yamamoto
,
H.
,
Kanovsky
,
J.
,
Wilson
,
D. L.
,
Costa
,
M. A.
, and
Rollins
,
A. M.
,
2012
, “
Volumetric Quantification of Fibrous Caps Using Intravascular Optical Coherence Tomography
,”
Biomed. Opt. Express
,
3
(
6
), pp.
1413
1426
.
26.
Wahle
,
A.
,
Prause
,
G. P.
,
von Birgelen
,
C.
,
Erbel
,
R.
, and
Sonka
,
M.
,
1999
, “
Fusion of Angiography and Intravascular Ultrasound In Vivo: Establishing the Absolute 3-D Frame Orientation
,”
IEEE Trans. Biomed. Eng.
,
46
(
10
), pp.
1176
1180
.
27.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
28.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity.
,
61
(
1–3
), pp.
1
48
.
29.
Guo
,
X.
,
Zhu
,
J.
,
Maehara
,
A.
,
Monoly
,
D.
,
Samady
,
H.
,
Wang
,
L.
,
Billiar
,
K. L.
,
Zheng
,
J.
,
Yang
,
C.
,
Mintz
,
G. S.
,
Giddens
,
D. P.
, and
Tang
,
D.
,
2016
, “
Quantify Patient-Specific Coronary Material Property and Its Impact on Stress/Strain Calculations Using In Vivo IVUS Data and 3D FSI Models: A Pilot Study
,”
Biomech. Model. Mechanobiol.
,
16
(
1
), pp.
333
344
.https://www.ncbi.nlm.nih.gov/pubmed/27561649
30.
Walsh
,
M. T.
,
Cunnane
,
E. M.
,
Mulvihill
,
J. J.
,
Akyildiz
,
A. C.
,
Gijsen
,
F. J.
, and
Holzapfel
,
G. A.
,
2014
, “
Uniaxial Tensile Testing Approaches for Characterization of Atherosclerotic Plaques
,”
J. Biomech.
,
47
(
4
), pp.
793
804
.
31.
Teng
,
Z.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Feng
,
J.
,
Yuan
,
J.
,
Lu
,
Q.
,
Sutcliffe
,
M. P.
,
Brown
,
A. J.
,
Jing
,
Z.
, and
Gillard
,
J. H.
,
2014
, “
Material Properties of Components in Human Carotid Atherosclerotic Plaques: A Uniaxial Extension Study
,”
Acta Biomater.
,
10
(
12
), pp.
5055
5063
.
32.
Wang
,
L.
,
Zheng
,
J.
,
Maehara
,
A.
,
Yang
,
C.
,
Billiar
,
K. L.
,
Wu
,
Z.
,
Bach
,
R.
,
Muccigrosso
,
D.
,
Mintz
,
G. S.
, and
Tang
,
D.
,
2015
, “
Morphological and Stress Vulnerability Indices for Human Coronary Plaques and Their Correlations With Cap Thickness and Lipid Percent: An IVUS-Based Fluid-Structure Interaction Multi-Patient Study
,”
PLoS Comput. Biol.
,
11
(
12
), p.
e1004652
.
33.
Teng
,
Z.
,
Tang
,
D.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Hoffman
,
A. H.
,
2009
, “
An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human Atherosclerotic Carotid Arteries in Circumferential and Axial Directions
,”
J. Biomech.
,
42
(
15
), pp.
2535
2539
.
34.
Mintz
,
G. S.
,
2015
, “
Optical Coherence Tomography and Virtual-Histology Intravascular Ultrasound Strange Bedfellows?… or Not?
,”
Circ. Cardiovasc. Imaging
,
8
(
10
), p.
e004045
.
You do not currently have access to this content.