This paper reports on a new boundary condition formulation to model the total coronary myocardial flow and resistance characteristics of the myocardial vascular bed for any specific patient when considered for noninvasive diagnosis of ischemia. The developed boundary condition model gives an implicit representation of the downstream truncated coronary bed. Further, it is based on incorporating patient-specific physiological parameters that can be noninvasively extracted to account for blood flow demand to the myocardium at rest and hyperemic conditions. The model is coupled to a steady three-dimensional (3D) collocated pressure-based finite volume flow solver and used to characterize the “functional significance” of a patient diseased coronary artery segment without the need for predicting the hemodynamics of the entire arterial system. Predictions generated with this boundary condition provide a deep understanding of the inherent challenges behind noninvasive image-based diagnostic techniques when applied to human diseased coronary arteries. The overall numerical method and formulated boundary condition model are validated via two computational-based procedures and benchmarked with available measured data. The newly developed boundary condition is used via a designed computational methodology to (a) confirm the need for incorporating patient-specific physiological parameters when modeling the downstream coronary resistance, (b) explain the discrepancies presented in the literature between measured and computed fractional flow reserve (FFRCT), and (c) discuss the current limitations and future challenges in shifting to noninvasive assessment of ischemia.

References

References
1.
Pijls
,
N. H. J.
,
de Bruyne
,
B.
,
Peels
,
K.
,
van der Voort, P. H.
,
Bonnier, H. J. R. M.
,
Bartunek, J.
, and
Koolen, J. J.
,
1996
, “
Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses
,”
N. Engl. J. Med.
,
334
, pp.
1703
1708
.
2.
Meijboom
,
W. B.
,
Van Mieghem
,
C. A.
,
van Pelt
,
N.
,
Weustink
,
A.
,
Pugliese
,
F.
,
Mollet
,
N. R.
,
Boersma
,
E.
,
Regar
,
E.
,
van Geuns
,
R. J.
,
de Jaegere
,
P. J.
,
Serruys
,
P. W.
,
Krestin
,
G. P.
, and
de Feyter
,
P. J.
,
2008
, “
Comprehensive Assessment of Coronary Artery Stenoses: Computed Tomography Coronary Angiography Versus Conventional Coronary Angiography and Correlation With Fractional Flow Reserve in Patients With Stable Angina
,”
J. Am. Coll. Cardiol.
,
52
(
8
), pp.
636
643
.
3.
Yong
,
A. S.
,
Ng
,
A. C.
,
Brieger
,
D.
,
Lowe
,
H. C.
,
Ng
,
M. K.
, and
Kritharides
,
L.
,
2011
, “
Three-Dimensional and Two-Dimensional Quantitative Coronary Angiography, and Their Prediction of Reduced Fractional Flow Reserve
,”
Eur. Heart J.
,
32
(
3
), pp.
345
353
.
4.
Taylor
,
C. A.
,
Fonte
,
T. A.
, and
Min
,
J. K.
,
2013
, “
Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve: Scientific Basis
,”
J. Am. Coll. Cardiol.
,
61
(
22
), pp.
2233
2241
.
5.
Min
,
J. K.
,
Berman
,
D. S.
,
Budoff
,
M. J.
,
Jaffer
,
F. A.
,
Leipsic
,
J.
,
Leon
,
M. B.
,
Mancini
,
G. B.
,
Mauri
,
L.
,
Schwartz
,
R. S.
, and
Shaw
,
L. J.
,
2011
, “
Rationale and Design of the DeFACTO (Determination of Fractional Flow Reserve by Anatomic Computed Tomographic AngiOgraphy) Study
,”
J. Cardiovasc. Comput. Tomogr.
,
5
(
5
), pp.
301
309
.
6.
Koo
,
B. K.
,
Erglis
,
A.
,
Doh
,
J. H.
,
Daniels
,
D. V.
,
Jegere
,
S.
,
Kim
,
H. S.
,
Dunning
,
A.
,
DeFrance
,
T.
,
Lansky
,
A.
,
Leipsic
,
J.
, and
Min
,
J. K.
,
2011
, “
Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms: Results From the Prospective Multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) Study
,”
J. Am. Coll. Cardiol.
,
58
(
19
), pp.
1989
1997
.
7.
LaDisa
,
J. F.
,
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Kim
,
H. J.
,
Xiao
,
N.
,
Ellwein
,
L. M.
,
Chan
,
F. P.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2011
, “
Computational Simulations for Aortic Coarctation: Representative Results From a Sampling of Patients
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
091008
.
8.
Wei
,
X.
,
Ghosh
,
S. K.
,
Taylor
,
M. E.
,
Johnson
,
V. A.
,
Emini
,
E. A.
,
Deutsch
,
P.
,
Lifson
,
J. D.
,
Bonhoeffer
,
S.
,
Nowak
,
M. A.
,
Hahn
,
B. H.
,
Shaw
,
G. M.
, and
Saag
,
M. S.
,
1995
, “
Viral Dynamics in Human Immunodeficiency Virus Type 1 Infection
,”
Nature
,
373
(
6510
), pp.
117
122
.
9.
Wu
,
H.
,
Ding
,
A. A.
, and
De Gruttola
,
V.
,
1998
, “
Estimation of HIV Dynamic Parameters
,”
Stat. Med.
,
17
(
21
), pp.
2463
2485
.
10.
Adams
,
M. C.
,
Turkington
,
T. G.
,
Wilson
,
J. M.
, and
Wong
,
T. Z.
,
2010
, “
A Systematic Review of the Factors Affecting Accuracy of SUV Measurements
,”
Am. J. Roentgenol.
,
195
(
2
), pp.
310
320
.
11.
Sun
,
N.
,
Torii
,
R.
,
Wood
,
N. B.
,
Hughes
,
A. D.
,
Thom
,
S. A.
, and
Xu
,
X. Y.
,
2009
, “
Computational Modeling of LDL and Albumin Transport in an In Vivo CT Image-Based Human Right Coronary Artery
,”
ASME Biomech. Eng.
,
131
(
2
), p.
021003
.
12.
Min
,
J. K.
,
Taylor
,
C. A.
,
Achenbach
,
S.
,
Koo
,
B. K.
,
Leipsic
,
J.
,
Nørgaard
,
B. L.
,
Pijls
,
N. J.
, and
De Bruyne
,
B.
,
2015
, “
Noninvasive Fractional Flow Reserve Derived From Coronary CT Angiography: Clinical Data and Scientific Principles
,”
JACC Cardiovasc. Imaging
,
8
(
10
), pp.
1209
1222
.
13.
West
,
G. B.
,
Brown
,
J. H.
, and
Enquist
,
B. J.
,
1997
, “
A General Model for the Origin of Allometric Scaling Laws in Biology
,”
Science
,
276
(
5309
), pp.
122
126
.
14.
Choy
,
J. S.
, and
Kassab
,
G. S.
,
2008
, “
Scaling of Myocardial Mass to Flow and Morphometry of Coronary Arteries
,”
J. Appl. Physiol.
,
104
(
5
), pp.
1281
1286
.
15.
Beck, K. C.
,
Randolph, L. N.
,
Bailey, K. R.
,
Wood, C. M.
,
Snyder, E. M.
, and
Johnson, B. D.
, 2006, “
Relationship Between Cardiac Output and Oxygen Consumption During Upright Cycle Exercise in Healthy Humans
,”
J. Appl. Physiol.
,
101
(5), pp. 1474–1480.
16.
Du Bois
,
D.
, and
Du Bois
,
E. F.
,
1916
, “
Clinical Calorimetry Tenth Paper a Formula to Estimate the Approximate Surface Area if Height and Weight be Known
,”
Arch. Intern. Med.
,
6
(2), pp. 863–871.
17.
Jacobs
,
P. L.
,
Nash
,
M. S.
, and
Mintz
,
C. D.
,
1999
, “
Assessment of Fractional Expired Gases and Air Flow by an Ambulatory Metabolic Analyzer
,”
J. Exercise Physiol.
,
2
(
4
), pp.
20
28
.https://www.asep.org/asep/asep/jacobcol.pdf
18.
Wilson
,
R. F.
,
Wyche
,
K.
,
Christensen
,
B. V.
,
Zimmer
,
S.
, and
Laxson
,
D. D.
,
1990
, “
Effects of Adenosine on Human Coronary Arterial Circulation
,”
Circulation
,
82
(
5
), pp.
1595
1606
.
19.
Kaufmann
,
P. A.
, and
Camici
,
P. G.
,
2005
, “
Myocardial Blood Flow Measurement by PET: Technical Aspects and Clinical Applications
,”
J. Nucl. Med.
,
46
(
1
), pp.
75
88
.http://jnm.snmjournals.org/content/46/1/75
20.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work I. The Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. U.S.A.
,
12
(
3
), pp.
207
214
.
21.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Coogan
,
J. S.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3195
3209
.
22.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J.
, and
Taylor
,
C. A.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41
), pp.
5685
5706
.
23.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2016
,
The Finite Volume Method in Computational Fluid Dynamics
,
Springer
, Cham, Switzerland.
24.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
, New York.
25.
Guyton
,
A. C.
,
Jones
,
C. E.
, and
Coleman
,
T. B.
,
1973
,
Circulatory Physiology: Cardiac Output and Its Regulation
,
WB Saunders Co
,
Philadelphia, PA
.
26.
Edwards, 2010,
Quick Guide to Cardiopulmonary Care
, W. T. McGee, J. M. Headley, and J. A. Frazier, eds., Edwards Lifesciences LLC, Irvine, CA, pp. 164–165.
27.
De Cort
,
S. C.
,
Innes
,
J. A.
,
Barstow
,
T. J.
, and
Guz
,
A.
,
1991
, “
Cardiac Output, Oxygen Consumption and Arteriovenous Oxygen Difference Following a Sudden Rise in Exercise Level in Humans
,”
J. Physiol.
,
441
(
1
), pp.
501
512
.
28.
Schindler
,
T. H.
,
Zhang
,
X. L.
,
Prior
,
J. O.
,
Cadenas
,
J.
,
Dahlbom
,
M.
,
Sayre
,
J.
, and
Schelbert
,
H. R.
,
2007
, “
Assessment of Intra-and Interobserver Reproducibility of Rest and Cold Pressor Test-Stimulated Myocardial Blood Flow With 13N-Ammonia and PET
,”
Eur. J. Nucl. Med. Mol. Imaging
,
34
(
8
), pp.
1178
1188
.
29.
Schelbert
,
H. R.
,
2012
, “
Positron Emission Tomography Measurements of Myocardial Blood Flow: Assessing Coronary Circulatory Function and Clinical Implications
,”
Heart
,
98
(
7
), pp.
592
600
.
30.
Prior
,
J. O.
,
Allenbach
,
G.
,
Valenta
,
I.
,
Kosinski
,
M.
,
Burger
,
C.
,
Verdun
,
F. R.
,
Bischof Delaloye
,
A.
, and
Kaufmann
,
P. A.
,
2012
, “
Quantification of Myocardial Blood Flow With 82Rb Positron Emission Tomography: Clinical Validation With 15O-Water
,”
Eur. J. Nucl. Med. Mol. Imaging
,
39
(
6
), pp.
1037
1047
.
31.
Gewirtz
,
H.
,
2012
, “
PET Measurement of Adenosine Stimulated Absolute Myocardial Blood Flow for Physiological Assessment of the Coronary Circulation
,”
J. Nucl. Cardiol.
,
19
(
2
), pp.
347
354
.
32.
Gould
,
K. L.
,
Lipscomb
,
K.
, and
Hamilton
,
G. W.
,
1974
, “
Physiologic Basis for Assessing Critical Coronary Stenosis: Instantaneous Flow Response and Regional Distribution During Coronary Hyperemia as Measures of Coronary Flow Reserve
,”
Am. J. Cardiol.
,
33
(
1
), pp.
87
94
.
33.
Dodge
,
J. T.
,
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1992
, “
Lumen Diameter of Normal Human Coronary Arteries. Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation
,”
Circulation
,
86
(
1
), pp.
232
246
.
34.
Østergaard
,
L.
,
Granfeldt
,
A.
,
Secher
,
N.
,
Tietze
,
A.
,
Iversen
,
N. K.
,
Jensen
,
M. S.
,
Andersen
,
K. K.
,
Nagenthiraja
,
K.
,
Gutiérrez-Lizardi
,
P.
,
Mouridsen
,
K.
,
Jespersen
,
S. N.
, and
Tønnesen
,
E. K.
,
2015
, “
Microcirculatory Dysfunction and Tissue Oxygenation in Critical Illness
,”
Acta Anaesthesiol. Scand.
,
59
(
10
), pp.
1246
1259
.
You do not currently have access to this content.