Arteriovenous fistulae (AVF) are the preferred choice of vascular access in hemodialysis patients; however, complications such as stenosis can lead to access failure or recirculation, which reduces dialysis efficiency. This study utilized computational fluid dynamics on a patient-specific radiocephalic fistula under hemodialysis treatment to determine the dynamics of access recirculation and identify the presence of disturbed flow. Metrics of transverse wall shear stress (transWSS) and oscillatory shear index (OSI) were used to characterize the disturbed flow acting on the blood vessel wall, while a power spectral density (PSD) analysis was used to calculate the any turbulence within the access. Results showed that turbulence is generated at the anastomosis and continues through the swing segment. The arterial needle dampens the flow as blood is extracted to the dialyzer, while the venous needle reintroduces turbulence due to the presence of jet flows. Adverse shear stresses are present throughout the vascular access and coincide with these complex flow fields. The position of the needles had no effect in minimizing these forces. However, improved blood extraction may occur when the arterial needle is placed further from the anastomosis, minimizing the effects of residual turbulent structures generated at the anastomosis. Furthermore, the arterial and venous needle may be placed in close proximity to each other without increasing the risk of access recirculation, in a healthy mature fistula, due to the relatively stable blood flow in this region. This may negate the need for a long cannulation segment and aid clinicians in optimizing needle placement for hemodialysis.

References

1.
Grassmann
,
A.
,
Gioberge
,
S.
,
Moeller
,
S.
, and
Brown
,
G.
,
2005
, “
ESRD Patients in 2004: Global Overview of Patient Numbers, Treatment Modalities and Associated Trends
,”
Nephrol., Dial., Transplant.
,
20
(
12
), pp.
2587
2593
.
2.
Levey
,
A. S.
,
Coresh
,
J.
,
Balk
,
E.
,
Kausz
,
A. T.
,
Levin
,
A.
,
Steffes
,
M. W.
,
Hogg
,
R. J.
,
Perrone
,
R. D.
,
Lau
,
J.
, and
Eknoyan
,
G.
,
2003
, “
National Kidney Foundation Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification
,”
Ann. Intern. Med.
,
139
(
2
), pp.
137
147
.
3.
Parisotto
,
M. T.
,
Schoder
,
V. U.
,
Miriunis
,
C.
,
Grassmann
,
A. H.
,
Scatizzi
,
L. P.
,
Kaufmann
,
P.
,
Stopper
,
A.
, and
Marcelli
,
D.
,
2014
, “
Cannulation Technique Influences Arteriovenous Fistula and Graft Survival
,”
Kidney Int.
,
86
(
4
), pp.
790
797
.
4.
Rothera
,
C.
,
McCallum
,
C.
,
Huang
,
S.
,
Heidenheim
,
P.
, and
Lindsay
,
R.
,
2011
, “
The Influence of Between-Needle Cannulation Distance on the Efficacy of Hemodialysis Treatments
,”
Hemodialysis Int.
,
15
(
4
), pp.
546
552
.
5.
Fulker, D., Kang, M., Simmons, A., and Barber, T., 2013, “
The Flow Field Near a Venous Needle in Hemodialysis: A Computational Study
,”
Hem Int.
,
17
(4), pp. 602–611.
6.
Fulker
,
D.
,
Simmons
,
A.
, and
Barber
,
T.
,
2016
, “
Computational Model of the Arterial and Venous Needle During Hemodialysis
,”
ASME J. Biomech. Eng.
,
139
(1), p. 011005.
7.
Van Tricht
,
I.
,
De Wachter
,
D.
,
Tordoir
,
J. H. M.
, and
Verdonck
,
P.
,
2005
, “
Hemodynamics and Complications Encountered With Arteriovenous Fistulas and Grafts as Vascular Access for Hemodialysis: A Review
,”
Ann. Biomed. Eng.
,
33
(
9
), pp.
1142
1157
.
8.
Kaushal
,
K.
, and
Wilson
,
S. E.
,
2010
, “
Thrombophilia as a Cause of Recurrent Vascular Access Thrombosis in Hemodialysis Patients
,”
Vascular Access: Principles and Practice
,
Lippincott Williams and Wilkins
,
Philadelphia, PA
, pp.
44
47
.
9.
Bilgic
,
M. A.
,
Yilmaz
,
H.
,
Bozkurt
,
A.
,
Celik
,
H. T.
,
Bilgic
,
I. C.
,
Gurel
,
O. M.
,
Kirbas
,
I.
,
Bavbek
,
N.
, and
Akcay
,
A.
,
2015
, “
Relationship of Late Arteriovenous Fistula Stenosis With Soluble E-Selectin and Soluble EPCR in Chronic Hemodialysis Patients With Arteriovenous Fistula
,”
Clin. Exp. Nephrol.
,
19
(
1
), pp.
133
139
.
10.
Sivanesan
,
S.
,
How
,
T. V.
, and
Bakran
,
A.
,
1999
, “
Sites of Stenosis in AV Fistulae for Haemodialysis Access
,”
Nephrol., Dial., Transplant.
,
14
(
1
), pp.
118
120
.
11.
Rodrigues
,
L. T.
,
Pengloan
,
J.
,
Baudin
,
S.
,
Testou
,
D.
,
Abaza
,
M.
,
Dahdah
,
G.
,
Mouton
,
A.
, and
Blanchard
,
D.
,
2000
, “
Treatment of Stenosis and Thrombosis in Haemodialysis Fistulas and Grafts by Interventional Radiology
,”
Nephrol., Dial., Transplant.
,
15
(
12
), pp.
2029
2036
.
12.
Hammes
,
M.
,
2015
, “
Hemodynamic and Biologic Determinates of Arteriovenous Fistula Outcomes in Renal Failure Patients
,”
BioMed Res. Int.
,
2015
, p. 171674.
13.
Lee
,
T.
,
Wang
,
Y.
,
Arend
,
L.
,
Cornea
,
V.
,
Campos
,
B.
,
Munda
,
R.
, and
Chaudhury
,
P. R.
,
2014
, “
Comparative Analysis of Cellular Phenotypes Within the Neointima From Vein Segments Collected Prior to Vascular Access Surgery and Stenotic Arteriovenous Dialysis Accesses
,”
Semin. Dial.
,
27
(
3
), pp.
303
309
.
14.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X.-M.
, and
Friedman
,
M. H.
,
2004
, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
286
(
5
), pp.
H1916
1922
.
15.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Computation in the Rabbit Aorta of a New Metric—The Transverse Wall Shear Stress—To Quantify the Multidirectional Character of Disturbed Blood Flow
,”
J. Biomech.
,
46
(
15
), pp.
2651
2658
.
16.
Unnikrishnan
,
S.
,
Huynh
,
T. N.
,
Brott
,
B. C.
,
Ito
,
Y.
,
Cheng
,
C.-H.
,
Shih
,
A. M.
,
Allon
,
M.
, and
Anayiotos
,
A. S.
,
2005
, “
Turbulent Flow Evaluation of the Venous Needle During Hemodialysis
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1141
1146
.
17.
Huynh
,
T. N.
,
Chacko
,
B. K.
,
Teng
,
X.
,
Brott
,
B. C.
,
Allon
,
M.
,
Kelpke
,
S. S.
,
Thompson
,
J. A.
,
Patel
,
R. P.
, and
Anayiotos
,
A. S.
,
2007
, “
Effects of Venous Needle Turbulence During Ex Vivo Hemodialysis on Endothelial Morphology and Nitric Oxide Formation
,”
J. Biomech.
,
40
(
10
), pp.
2158
2166
.
18.
Bozzetto
,
M.
,
Ene-Iordache
,
B.
, and
Remuzzi
,
A.
,
2016
, “
Transitional Flow in the Venous Side of Patient-Specific Arteriovenous Fistulae for Hemodialysis
,”
Ann. Biomed. Eng.
,
44
(8), pp.
2388
2401
.
19.
Khan
,
M. O.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2015
, “
Narrowing the Expertise Gap for Predicting Intracranial Aneurysm Hemodynamics: Impact of Solver Numerics Versus Mesh and Time-Step Resolution
,”
Am. J. Neuroradiology
,
36
(7), pp. 1310–1316.
20.
Caroli
,
A.
,
Manini
,
S.
,
Antiga
,
L.
,
Passera
,
K.
,
Ene-Iordache
,
B.
,
Rota
,
S.
,
Remuzzi
,
G.
,
Bode
,
A.
,
Leermakers
,
J.
,
van de Vosse
,
F. N.
,
Vanholder
,
R.
,
Malovrh
,
M.
,
Tordoir
,
J. H. M.
, and
Remuzzi
,
A.
,
2013
, “
Validation of a Patient-Specific Hemodynamic Computational Model for Surgical Planning of Vascular Access in Hemodialysis Patients
,”
Kidney Int.
,
84
(6), pp.
1237
1245
.
21.
Ene-Iordache
,
B.
, and
Remuzzi
,
A.
,
2012
, “
Disturbed Flow in Radial-Cephalic Arteriovenous Fistulae for Haemodialysis: Low and Oscillating Shear Stress Locates the Sites of Stenosis
,”
Nephrol., Dial., Transplant.
,
27
(
1
), pp.
358
368
.
22.
Ene-Iordache
,
B.
,
Semperboni
,
C.
,
Dubini
,
G.
, and
Remuzzi
,
A.
,
2015
, “
Disturbed Flow in a Patient-Specific Arteriovenous Fistula for Hemodialysis: Multidirectional and Reciprocating Near-Wall Flow Patterns
,”
J. Biomech.
,
48
(
10
), pp.
2195
2200
.
23.
Fulker
,
D.
,
Forster
,
K.
,
Simmons
,
A.
, and
Barber
,
T.
,
2017
, “
Stereoscopic Particle Image Velocimetry of the Impinging Venous Needle Jet During Hemodialysis
,”
Int. J. Heat Fluid Flow
,
67
, pp.
59
68
.
24.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p. 078001.
25.
Fulker
,
D.
,
Keshavarzi
,
G.
,
Simmons
,
A.
,
Pugh
,
D.
, and
Barber
,
T.
,
2015
, “
Pulsatility Produced by the Hemodialysis Roller Pump as Measured by Doppler Ultrasound
,”
Artif. Organs
,
39
(
11
), pp.
945
950
.
26.
Kolmogorov
,
A. N.
,
1941
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Proc. Math. Phys. Sci.
,
434
(1890), pp. 9–13.http://www.jstor.org/stable/51980
27.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries, La Canada Flintridge
,
CA
.
28.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Stanford University, Stanford, CA, Report No.
N89-24555
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf
29.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.
30.
Andersson
,
M.
,
Lantz
,
J.
,
Ebbers
,
T.
, and
Karlsson
,
M.
,
2017
, “
Multidirectional WSS Disturbances in Stenotic Turbulent Flows: A Pre- and Post-Intervention Study in an Aortic Coarctation
,”
J. Biomech.
,
51
, pp.
8
16
.
31.
Lindsay
,
R. M.
,
Bradfield
,
E.
,
Rothera
,
C.
,
Kianfar
,
C.
,
Malek
,
P.
, and
Blake
,
P. G.
,
1998
, “
A Comparison of Methods for the Measurement of Hemodialysis Access Recirculation and Access Blood Flow Rate
,”
ASAIO J.
,
44
(
1
), p.
54
.
32.
Poepping
,
T. L.
,
Rankin
,
R. N.
, and
Holdsworth
,
D. W.
,
2010
, “
Flow Patterns in Carotid Bifurcation Models Using Pulsed Doppler Ultrasound: Effect of Concentric vs. Eccentric Stenosis on Turbulence and Recirculation
,”
Ultrasound Med. Biol.
,
36
(
7
), pp.
1125
1134
.
33.
Weitzel
,
W. F.
,
2008
, “
Analysis of Novel Geometry-Independent Method for Dialysis Access Pressure-Flow Monitoring
,”
Theor. Biol. Med. Modell.
,
5
(
1
), p.
22
.
34.
Fulker
,
D.
,
Simmons
,
A.
,
Kabir
,
K.
,
Kark
,
L.
, and
Barber
,
T.
,
2016
, “
The Hemodynamic Effects of Hemodialysis Needle Rotation and Orientation in an Idealized Computational Model
,”
Artif. Organs
,
40
(
2
), pp.
185
189
.
35.
van Loon
,
M. M.
,
Goovaerts
,
T.
,
Kessels
,
A. G. H.
,
van der Sande
,
F. M.
, and
Tordoir
,
J. H. M.
,
2010
, “
Buttonhole Needling of Haemodialysis Arteriovenous Fistulae Results in Less Complications and Interventions Compared to the Rope-Ladder Technique
,”
Nephrol., Dial., Transplant.
,
25
(
1
), pp.
225
230
.
36.
Ward
,
J.
,
Shaw
,
K.
, and
Davenport
,
A.
,
2010
, “
Patients' Perspectives of Constant-Site (Buttonhole) Cannulation for Haemodialysis Access
,”
Nephron Clin. Pract.
,
116
(
2
), pp.
c123
c127
.
37.
Mantha
,
M.
,
Killen
,
J. P.
,
Baer
,
R.
, and
Moffat
,
J.
,
2011
, “
Percutaneous Maintenance and Salvage of Dysfunctional Arteriovenous Fistulae and Grafts by Nephrologists in Australia
,”
Nephrology
,
16
(
1
), pp.
46
52
.
38.
Neuen
,
B. L.
,
Baer
,
R. A.
,
Grainer
,
F.
, and
Mantha
,
M. L.
,
2015
, “
Endovascular Stent Placement for Hemodialysis Arteriovenous Access Stenosis
,”
Int. J. Vasc. Med.
,
2015
, p. 971202.
39.
Browne
,
L. D.
,
Griffin
,
P.
,
Bashar
,
K.
,
Walsh
,
S. R.
,
Kavanagh
,
E. G.
, and
Walsh
,
M. T.
,
2015
, “
In Vivo Validation of the in Silico Predicted Pressure Drop Across an Arteriovenous Fistula
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1275
1286
.
40.
Lee
,
S. E.
,
Smith
,
D. S.
,
Loth
,
F.
,
Fischer
,
P. F.
, and
Bassiouny
,
H. S.
,
2007
, “
Importance of Flow Division on Transition to Turbulence Within an Arteriovenous Graft
,”
J. Biomech.
,
40
(
5
), pp.
981
992
.
41.
Kefayati
,
S.
,
Holdsworth
,
D. W.
, and
Poepping
,
T. L.
,
2014
, “
Turbulence Intensity Measurements Using Particle Image Velocimetry in Diseased Carotid Artery Models: Effect of Stenosis Severity, Plaque Eccentricity, and Ulceration
,”
J. Biomech.
,
47
(
1
), pp.
253
263
.
42.
Davies
,
P. F.
,
Remuzzi
,
A.
,
Gordon
,
E. J.
,
Dewey
,
F. C.
, and
Gimbrone
,
M. A.
,
1986
, “
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
,
83
(
7
), pp.
2114
2117
.
43.
McGah
,
P. M.
,
Leotta
,
D. F.
,
Beach
,
K. W.
, and
Aliseda
,
A.
,
2014
, “
Effects of Wall Distensibility in Hemodynamic Simulations of an Arteriovenous Fistula
,”
Biomech. Model. Mechanobiol.
,
13
(
3
), pp.
679
695
.
44.
Decorato
,
I.
,
Kharboutly
,
Z.
,
Vassallo
,
T.
,
Penrose
,
J.
,
Legallais
,
C.
, and
Salsac
,
A. V.
,
2014
, “
Numerical Simulation of the Fluid Structure Interactions in a Compliant Patient Specific Arteriovenous Fistula
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
2
), pp.
143
159
.
45.
Akherat
,
S. J. M.
,
Cassel
,
K.
,
Boghosian
,
M.
,
Dhar
,
P.
, and
Hammes
,
M.
,
2017
, “
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
,”
ASME J. Biomech. Eng.
,
139
(
4
), p.
044504
.
You do not currently have access to this content.