Venous ulcers are deep wounds that are located predominantly on the lower leg. They are prone to infection and once healed have a high probability of recurrence. Currently, there are no effective measures to predict and prevent venous ulcers from formation. Hence, the goal of this work was to develop a Windkessel-based model that can be used to identify hemodynamic parameters that change between healthy individuals and those with wounds. Once identified, these parameters have the potential to be used as indicators of when internal conditions change, putting the patient at higher risk for wound formation. In order to achieve this goal, blood flow responses in lower legs were measured experimentally by a laser Doppler perfusion monitor (LDPM) and simulated with a modeling approach. A circuit model was developed on the basis of the Windkessel theory. The hemodynamic parameters were extracted for three groups: legs with ulcers (“wounded”), legs without ulcers but from ulcer patients (“nonwounded”), and legs without vascular disease (“healthy”). The model was executed by two independent operators, and both operators reported significant differences between wounded and healthy legs in localized vascular resistance and compliance. The model successfully replicated the experimental blood flow profile. The global and local vascular resistances and compliance parameters rendered quantifiable differences between a population with venous ulcers and healthy individuals. This work supports that the Windkessel modeling approach has the potential to determine patient specific parameters that can be used to identify when conditions change making venous ulcer formation more likely.

References

References
1.
Cleveland Clinic
,
2015
, “
Lower Extremity Ulcers
,” Cleveland Clinic, Cleveland, OH, accessed Dec. 12, 2017, https://my.clevelandclinic.org/health/diseases/17169-leg-and-foot-ulcers?view=print
2.
Snyder
,
R. J.
,
2005
, “
Treatment of Nonhealing Ulcers With Allografts
,”
Clin. Dermatol.
,
23
(4), pp.
388
395
.
3.
Kolluri
,
R.
,
2014
, “
Management of Venous Ulcers
,”
Tech. Vasc. Interv. Radiol.
,
17
(2), pp.
132
138
.
4.
Lamel
,
S. A.
, and
Kirsner
,
R. S.
,
2013
, “
New Approaches to Enhanced Wound Healing: Future Modalities for Chronic Venous Ulcers
,”
Drug Discov. Today Dis. Mech.
,
10
(3–4), pp.
e71
e77
.
5.
Lazarus
,
G.
,
Valle
,
M. F.
,
Malas
,
M.
,
Qazi
,
U.
,
Maruthur
,
N. M.
,
Doggett
,
D.
,
Fawole, O.
,
Bass, E.
, and
Zenilman, J.
,
2014
, “
Chronic Venous Leg Ulcer Treatment: Future Research Needs
,”
Wound Repair Regen.
,
22
(1), pp.
34
42
.
6.
Johnson
,
S.
,
2002
, “
Compression Hosiery in the Prevention and Treatment of Venous Leg Ulcers
,”
J. Tissue Viability
,
12
(2), pp.
67
74
.
7.
Simka
,
M.
, and
Majewski
,
E.
,
2003
, “
The Social and Economic Burden of Venous Leg Ulcers: Focus on the Role of Micronized Purified Flavonoid Fraction Adjuvant Therapy
,”
Am. J. Clin. Dermatol.
,
4
(8), pp.
573
581
.
8.
Valencia
,
I. C.
,
Falabella
,
A.
,
Kirsner
,
R. S.
, and
Eaglstein
,
W. H.
,
2001
, “
Chronic Venous Insufficiency and Venous Leg Ulceration
,”
J. Am. Acad. Dermatol.
,
44
(3), pp.
401
424
.
9.
Milic
,
D. J.
,
Zivic
,
S. S.
,
Bogdanovic
,
D. C.
,
Karanovic
,
N. D.
, and
Golubovic
,
Z. V.
,
2009
, “
Risk Factors Related to the Failure of Venous Leg Ulcers to Heal With Compression Treatment
,”
J. Vasc. Surg.
,
49
(5), pp.
1242
1247
.
10.
Collins
,
L.
, and
Seraj
,
S.
,
2010
, “
Diagnosis and Treatment of Venous Ulcers
,”
Am. Fam. Physician
,
81
(8), pp.
989
996
.https://www.aafp.org/afp/2010/0415/p989.html
11.
Ontario
,
H. Q.
,
2010
, “
Endovascular Laser Therapy for Varicose Veins an Evidence-Based Analysis
,”
Ont. Health Technol. Assess Ser.
,
10
(6), pp.
1
92
.https://www.ncbi.nlm.nih.gov/pubmed/23074409
12.
Herrman
,
E. C.
,
Knapp
,
C. F.
,
Donofrio
,
J. C.
, and
Salcido
,
R.
,
1999
, “
Skin Perfusion Responses to Surface Pressure-Induced Ischemia: Implication for the Developing Pressure Ulcer
,”
J. Rehabil. Res. Dev.
,
36
(2), pp.
109
120
.https://www.ncbi.nlm.nih.gov/pubmed/10661527
13.
Jan
,
Y. K.
,
Liao
,
F.
,
Rice
,
L. A.
, and
Woods
,
J. A.
,
2013
, “
Using Reactive Hyperemia to Assess the Efficacy of Local Cooling on Reducing Sacral Skin Ischemia Under Surface Pressure in People With Spinal Cord Injury: A Preliminary Report
,”
Arch. Phys. Med. Rehabil.
,
94
(10), pp.
1982
1989
.
14.
Rendell
,
M. S.
, and
Wells
,
J. M.
,
1998
, “
Ischemic and Pressure-Induced Hyperemia: A Comparison
,”
Arch. Phys. Med. Rehabil.
,
79
, pp.
1451
1455
.
15.
Mollison
,
H. L.
,
McKay
,
W. P. S.
,
Patel
,
R. H.
,
Kriegler
,
S.
, and
Negraeff
,
O. E.
,
2006
, “
Reactive Hyperemia Increases Forearm Vein Area
,”
Can. J. Anaesth.
,
53
, pp.
759
763
.
16.
Langemo
,
D. K.
,
1999
, “
Venous Ulcers: Etiology and Care of Patients Treated With Human Skin Equivalent Grafts
,”
J. Vasc. Nurs.
,
17
(1), pp.
6
11
.
17.
Mlacak
,
B.
,
Blinc
,
A.
,
Gale
,
N.
, and
Ivka
,
B.
,
2005
, “
Microcirculation Disturbances in Patients With Venous Ulcer before and after Healing as Assessed by Laser Doppler Flux-Metry
,”
Arch. Med. Res.
,
36
(5), pp.
480
484
.
18.
Heit
,
J. A.
,
Rooke
,
T. W.
,
Silverstein
,
M. D.
,
Mohr
,
D. N.
,
Lohse
,
C. M.
,
Petterson
,
T. M.
,
O'Fallon, W.
, and
Melton, J.
,
2001
, “
Trends in the Incidence of Venous Stasis Syndrome and Venous Ulcer: A 25-Year Population-Based Study
,”
J. Vasc. Surg.
,
33
(5), pp.
1022
1027
.
19.
Sagawa
,
K.
,
Lie
,
R. K.
, and
Schaefer
,
J.
,
1990
, “
Translation of Otto Frank's Paper ‘Die Grundform Des Arteriellen Pulses’ Zeitschrift Fur Biologie 37: 483–526 (1899)
,”
J. Mol. Cell. Cardiol.
,
22
(3), pp.
253
277
.
20.
Westerhof
,
N.
,
Lankhaar
,
J. W.
, and
Westerhof
,
B. E.
,
2009
, “
The Arterial Windkessel
,”
Med. Biol. Eng. Comput.
,
47
(2), pp.
131
141
.
21.
Zheng
,
Y.
, and
Mayhew
,
J.
,
2009
, “
A Time-Invariant Visco-Elastic Windkessel Model Relating Blood Flow and Blood Volume
,”
Neuroimage
,
47
(4), pp.
1371
1380
.
22.
Abdolrazaghi
,
M.
,
Navidbakhsh
,
M.
, and
Hassani
,
K.
,
2010
, “
Mathematical Modelling and Electrical Analog Equivalent of the Human Cardiovascular System
,”
Cardiovasc. Eng.
,
10
(2), pp.
45
51
.
23.
Segers
,
P.
,
Stergiopulos
,
N.
,
Verdonck
,
P.
, and
Verhoeven
,
R.
,
1997
, “
Assessment of Distributed Arterial Network Models
,”
Med. Biol. Eng. Comput.
,
35
(6), pp.
729
736
.
24.
Vo
,
T. V.
,
Hammer
,
P. E.
,
Hoimes
,
M. L.
,
Nadgir
,
S.
, and
Fantini
,
S.
,
2007
, “
Mathematical Model for the Hemodynamic Response to Venous Occlusion Measured With Near-Infrared Spectroscopy in the Human Forearm
,”
IEEE Trans. Biomed. Eng.
,
54
(4), pp.
573
584
.
25.
de Mul
,
F. F. M.
,
Morales
,
F.
,
Smit
,
A. J.
, and
Graaff
,
R.
,
2005
, “
A Model for Post-Occlusive Reactive Hyperemia as Measured With Laser-Doppler Perfusion Monitoring
,”
IEEE Trans. Biomed. Eng.
,
52
(2), pp.
184
190
.
26.
de Mul
,
F. F. M.
,
Blaauw
,
J.
,
Smit
,
R. J.
,
Rakhorst
,
G.
, and
Aarnoudse
,
J. G.
,
2009
, “
Time Development Models for Perfusion Provocations Studied With Laser-Doppler Flowmetry, Applied to Iontophoresis and PORH
,”
Microcirculation
,
16
(7), pp.
559
571
.
27.
Humeau
,
M.
,
Saumet
,
J.
, and
L’huillier
,
J.
,
2000
, “
Simplified Model of Laser Doppler Signals During Reactive Hyperaemia
,”
Med. Biol. Eng. Comput.
,
38
(1), pp.
80
87
.
28.
Solovyev
,
A.
,
Mi
,
Q.
,
Tzen
,
Y. T.
,
Brienza
,
D.
, and
Vodovotz
,
Y.
,
2013
, “
Hybrid Equation/Agent-Based Model of Ischemia-Induced Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects With Spinal Cord Injury
,”
PLoS Comput. Biol.
,
9
(
5
), p.
e1003070
.
29.
Smye
,
S.
, and
Bloor
,
M.
,
1990
, “
A Single-Tube Mathematical Model of Reactive Hyperaemia
,”
Phys. Med. Biol.
,
35
(1), pp.
103
113
.
30.
Wilkin
,
J. K.
,
1987
, “
Cutaneous Reactive Hyperemia: Viscoelasticity Determines Response
,”
J. Invest. Dermatol.
,
89
, pp.
197
200
.https://www.ncbi.nlm.nih.gov/pubmed/2955056
31.
Grace
,
P. A.
,
1994
, “
Ischemia-Reperfusion Injury
,”
Br. J. Surg.
,
81
(5), pp.
637
647
.
32.
Mak
,
A. F. T.
,
Zhang
,
M.
, and
Tam
,
E. W. C.
,
2010
, “
Biomechanics of Pressure Ulcer in Body Tissues Interacting With External Forces During Locomotion
,”
Annu. Rev. Biomed. Eng.
,
12
, pp.
29
53
.
33.
Hagisawa
,
S.
,
Ferguson-Pell
,
M.
,
Cardi
,
M.
, and
Miller
,
D.
,
1994
, “
Assessment of Skin Blood Content and Oxygenation in Spinal Cord Injured Subjects During Reactive Hyperemia
,”
J. Rehabil. Res. Dev.
,
31
(1), pp.
1
14
.https://www.ncbi.nlm.nih.gov/pubmed/8035356
34.
Pan
,
W.
,
Drost
,
J. P.
,
Basson
,
M. D.
, and
Bush
,
T. R.
,
2015
, “
Skin Perfusion Responses Under Normal and Combined Loadings: Comparisons Between Legs With Venous Stasis Ulcers and Healthy Legs
,”
Clin. Biomech.
,
30
(10), pp.
1218
1224
.
35.
Manorama
,
A.
,
Meyer
,
R.
,
Wiseman
,
R.
, and
Bush
,
T. R.
,
2013
, “
Quantifying the Effects of External Shear Loads on Arterial and Venous Blood Flow: Implications for Pressure Ulcer Development
,”
Clin. Biomech.
,
28
(5), pp.
574
578
.
36.
Zhang
,
M.
, and
Roberts
,
V. C.
,
1993
, “
The Effect of Shear Forces Externally Applied to Skin Surface on Underlying Tissues
,”
J. Biomed. Eng.
,
15
(
6
), pp.
451
456
.
37.
Bennett
,
L.
,
Kavner
,
D.
,
Lee
,
B. K.
, and
Trainor
,
F. A.
,
1979
, “
Shear Vs Pressure as Causative Factors in Skin Blood Flow Occlusion
,”
Arch. Phys. Med. Rahbil.
,
60
(7), pp.
309
314
.https://www.ncbi.nlm.nih.gov/pubmed/454129
38.
Burton
,
A. C.
,
1972
,
Physiology and Biophysics of Circulation
,
Year Book Medical Publishers
,
Chicago, IL
.
39.
Cooney
,
D. O.
,
1973
,
Biomedical Engineering Principles: An Introduction to Fluid, Heat, and Mass Transport Processes
,
M. Dekker
,
New York
.
40.
Ohm
,
G. S.
,
1827
,
Die Galvanische Kette, Mathematisch
, Bei T H Riemann, Berlin, pp. 1–244.
41.
Kutner
,
M. H.
,
Nachtsheim
,
C. J.
,
Neter
,
J.
, and
Li
,
W.
,
2013
, “
Analysis of Factor Level Means
,”
Applied Linear Statistics Model
,
5th ed.
,
McGraw-Hill Education
, New York, pp.
733
774
.
42.
Sherratt
,
J. A.
, and
Dallon
,
J. C.
,
2002
, “
Theoretical Models of Wound Healing: Past Successes and Future Challenges
,”
C. R. Biol.
,
325
(5), pp.
557
564
.
43.
Geris
,
L.
,
Gerisch
,
A.
, and
Schugart
,
R. C.
,
2010
, “
Mathematical Modeling in Wound Healing, Bone Regeneration and Tissue Engineering
,”
Acta Biotheor.
,
58
(4), pp.
355
367
.
44.
Gefen
,
A.
,
2009
,
Bioengineering Research of Chronic Wounds a Multidisciplinary Study Approach
, Vol.
1
,
Springer
,
Berlin
.
45.
Bennett
,
S. P.
,
Griffiths
,
G. D.
,
Schor
,
A. M.
,
Leese
,
G. P.
, and
Schor
,
S. L.
,
2003
, “
Growth Factors in the Treatment of Diabetic Foot Ulcers
,”
Br. J. Surg.
,
90
(2), pp.
133
146
.
46.
Casavola
,
C.
,
Paunescu
,
L. A.
,
Fantini
,
S.
, and
Gratton
,
E.
,
2000
, “
Blood Flow and Oxygen Consumption With Near-Infrared Spectroscopy and Venous Occlusion: Spatial Maps and the Effect of Time and Pressure of Inflation
,”
J. Biomed. Opt.
,
5
(3), pp.
269
276
.
47.
Suehiro
,
K.
,
Morikage
,
N.
,
Murakami
,
M.
,
Yamashita
,
O.
,
Ueda
,
K.
,
Samura
,
M.
, and
Hamano, K.
,
2014
, “
A Study of Leg Edema in Immobile Patients
,”
Circ. J.
,
78
(7), pp.
1733
1739
.
48.
Gelman
,
S.
,
2008
, “
Venous Function and Central Venous Pressure
,”
Am. Soc. Anestesiol
,
108
(
4
), pp.
735
748
49.
Goldoozian
,
L. S.
, and
Zahedi
,
E.
,
2011
, “
Electrical Analog Model of Arterial Compliance During Reactive Hyperemia
,”
First Middle East Conference on Biomedical Engineering
(
MECBME
), Sharjah, United Arab Emirates, Feb. 21–24, pp.
49
53
.
You do not currently have access to this content.