Understanding the impact of thermally and mechanically loading biological tissue to supraphysiological levels is becoming of increasing importance as complex multiphysical tissue–device interactions increase. The ability to conduct accurate, patient specific computer simulations would provide surgeons with valuable insight into the physical processes occurring within the tissue as it is heated or cooled. Several studies have modeled tissue as porous media, yet fully coupled thermoporomechanics (TPM) models are limited. Therefore, this study introduces a small deformation theory of modeling the TPM occurring within biological tissue. Next, the model is used to simulate the mass, momentum, and energy balance occurring within an artery wall when heated by a tissue fusion device and compared to experimental values. Though limited by its small strain assumption, the model predicted final tissue temperature and water content within one standard deviation of experimental data for seven of seven simulations. Additionally, the model showed the ability to predict the final displacement of the tissue to within 15% of experimental results. These results promote potential design of novel medical devices and more accurate simulations allowing for scientists and surgeons to quickly, yet accurately, assess the effects of surgical procedures as well as provide a first step toward a fully coupled large deformation TPM finite element (FE) model.

References

References
1.
Berjano
,
E. J.
,
2006
, “
Theoretical Modeling for Radiofrequency Ablation: State-of-the-Art and Challenges for the Future
,”
Biomed. Eng. Online
,
5
(
1
), p.
24
.
2.
Fankell
,
D. P.
,
Kramer
,
E.
,
Cezo
,
J.
,
Taylor
,
K. D.
,
Ferguson
,
V. L.
, and
Rentschler
,
M. E.
,
2016
, “
A Novel Parameter for Predicting Arterial Fusion and Cutting in Finite Element Models
,”
Ann. Biomed. Eng.
,
44
(11), pp. 3295–3306.https://www.ncbi.nlm.nih.gov/pubmed/26983840
3.
Pearce
,
J. A.
,
2010
, “
Models for Thermal Damage in Tissues: Processes and Applications
,”
Crit. Rev. Biomed. Eng.
,
38
(
1
), pp.
1
20
.
4.
Tungjitkusolmun
,
S.
,
Staelin
,
S. T.
,
Haemmerich
,
D.
,
Tsai
,
J.-Z.
,
Cao
,
H.
,
Webster
,
J. G.
,
Lee
,
F. T.
,
Mahvi
,
D. M.
, and
Vorperian
,
V. R.
,
2002
, “
Three-Dimensional Finite-Element Analyses for Radio-Frequency Hepatic Tumor Ablation
,”
IEEE Trans. Biomed. Eng.
,
49
(
1
), pp.
3
9
.
5.
Datta
,
A. K.
, and
Rakesh
,
V.
,
2010
,
An Introduction to Modeling of Transport Processes: Applications to Biomedical Systems
,
Cambridge University Press
,
Cambridge, UK
.
6.
Martin
,
C.
,
Sun
,
W.
, and
Elefteriades
,
J.
,
2015
, “
Patient-Specific Finite Element Analysis of Ascending Aorta Aneurysms
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
308
(
10
), pp.
H1306
H1316
.
7.
Karajan
,
N.
,
2012
, “
Multiphasic Intervertebral Disc Mechanics: Theory and Application
,”
Arch. Comput. Methods Eng.
,
19
(
2
), pp.
261
339
.
8.
Jin
,
Z.
,
2014
,
Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues
,
Elsevier
,
Philadelphia, PA
.
9.
Regueiro
,
R. A.
,
Zhang
,
B.
, and
Wozniak
,
S. L.
,
2014
, “
Large Deformation Dynamic Three-Dimensional Coupled Finite Element Analysis of Soft Biological Tissues Treated as Biphasic Porous Media
,”
Comput. Model. Eng. Sci.
,
98
(
1
), pp.
1
39
.http://www.techscience.com/doi/10.3970/cmes.2014.098.001.pdf
10.
Jayaraman
,
G.
,
1983
, “
Water Transport in the Arterial Wall—A Theoretical Study
,”
J. Biomech.
,
16
(
10
), pp.
833
840
.
11.
Chapelle
,
D.
,
Gerbeau
,
J.-F.
,
Sainte-Marie
,
J.
, and
Vignon-Clementel
,
I. E.
,
2010
, “
A Poroelastic Model Valid in Large Strains With Applications to Perfusion in Cardiac Modeling
,”
Comput. Mech.
,
46
(
1
), pp.
91
101
.
12.
Diller
,
K. R.
, and
Hayes
,
L. J.
,
1983
, “
A Finite Element Model of Burn Injury in Blood-Perfused Skin
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
300
307
.
13.
Ehlers
,
W.
, and
Bluhm
,
J.
,
2013
,
Porous Media: Theory, Experiments and Numerical Applications
,
Springer-Verlag
,
Berlin
.
14.
Bowen
,
R. M.
,
1980
, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
,
18
(
9
), pp.
1129
1148
.
15.
De Boer
,
R.
,
2005
,
Trends in Continuum Mechanics of Porous Media
,
Springer
,
Dordrecht, The Netherlands
.
16.
Wang
,
W.
,
Regueiro
,
R. A.
, and
McCartney
,
J. S.
,
2015
, “
Coupled Axisymmetric Thermo-Poro-Mechanical Finite Element Analysis of Energy Foundation Centrifuge Experiments in Partially Saturated Silt
,”
Geotech. Geol. Eng.
,
33
(
2
), pp.
373
388
.
17.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Medford, MA
.
18.
Lewis
,
R. W.
, and
Schrefler
,
B. A.
,
1999
,
The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media
,
2nd ed.
,
Wiley
,
Medford, MA
.
19.
Coussy
,
O.
,
2004
,
Poromechanics
,
2nd ed.
,
Wiley
,
Chichester, UK
.
20.
Wang
,
W.
,
2014
, “
Coupled Thermo-Poro-Mechanical Axisymmetric Finite Element Modeling of Soil-Structure Interaction in Partially Saturated Soils
,”
Ph.D. dissertation
, University of Colorado Boulder, Boulder, CO.http://scholar.colorado.edu/cgi/viewcontent.cgi?article=1009&context=cven_gradetds
21.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
(
1
), pp.
167
178
.
22.
Pearce
,
J.
,
2015
, “
Numerical Model Study of Radio Frequency Vessel Sealing Thermodynamics
,”
Proc. SPIE
,
9326
, p.
93260A
.
23.
Datta
,
A. K.
,
2007
, “
Porous Media Approaches to Studying Simultaneous Heat and Mass Transfer in Food Processes—II: Property Data and Representative Results
,”
J. Food Eng.
,
80
(
1
), pp.
96
110
.
24.
Halder
,
A.
,
Dhall
,
A.
, and
Datta
,
A. K.
,
2010
, “
Modeling Transport in Porous Media With Phase Change: Applications to Food Processing
,”
ASME J. Heat Transfer
,
133
(
3
), p.
031010
.
25.
Halder
,
A.
,
Dhall
,
A.
, and
Datta
,
A. K.
,
2007
, “
An Improved, Easily Implementable, Porous Media Based Model for Deep-Fat Frying—Part I: Model Development and Input Parameters
,”
Food Bioprod. Process.
,
85
(
3
), pp.
209
219
.
26.
Cezo
,
J.
,
2013
, “
Thermal Tissue Fusion of Arteries: Methods, Mechanisms, & Mechanics
,”
Ph. D. dissertation
, University of Colorado Boulder, Boulder, CO.http://scholar.colorado.edu/mcen_gradetds/74/
27.
Cezo
,
J. D.
,
Passernig
,
A. C.
,
Ferguson
,
V. L.
,
Taylor
,
K. D.
, and
Rentschler
,
M. E.
,
2014
, “
Evaluating Temperature and Duration in Arterial Tissue Fusion to Maximize Bond Strength
,”
J. Mech. Behav. Biomed. Mater.
,
30
, pp.
41
49
.
28.
Cengel
,
Y.
, and
Ghajar
,
A.
,
2010
,
Heat and Mass Transfer: Fundamentals and Applications
,
4th ed.
,
McGraw-Hill
,
New York
.
29.
Johnson
,
M.
, and
Tarbell
,
J. M.
,
2000
, “
A Biphasic Anisotropic Model of the Aortic Wall
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
52
57
.
30.
Chen
,
S. S.
,
Wright
,
N. T.
, and
Humphrey
,
J. D.
,
1997
, “
Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
372
378
.
31.
Khalili
,
N.
,
Uchaipichat
,
A.
, and
Javadi
,
A. A.
,
2010
, “
Skeletal Thermal Expansion Coefficient and Thermo-Hydro-Mechanical Constitutive Relations for Saturated Homogeneous Porous Media
,”
Mech. Mater.
,
42
(
6
), pp.
593
598
.
32.
Chen
,
R. K.
,
Chastagner
,
M. W.
,
Dodde
,
R. E.
, and
Shih
,
A. J.
,
2013
, “
Electrosurgical Vessel Sealing Tissue Temperature: Experimental Measurement and Finite Element Modeling
,”
IEEE Trans. Biomed. Eng.
,
60
(
2
), pp.
453
460
.
33.
Karšaj
,
I.
, and
Humphrey
,
J. D.
,
2012
, “
A Multilayered Wall Model of Arterial Growth and Remodeling
,”
Mech. Mater. Int. J.
,
44
, pp.
110
119
.
34.
Marbán
,
A.
,
Casals
,
A.
,
Fernández
,
J.
, and
Amat
,
J.
,
2014
, “
Haptic Feedback in Surgical Robotics: Still a Challenge
,”
ROBOT2013: First Iberian Robotics Conference
, Vol.
252
,
M. A.
Armada
,
A.
Sanfeliu
, and
M.
Ferre
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
245
253
.
You do not currently have access to this content.