Linking head kinematics to injury risk has been the focus of numerous brain injury criteria. Although many early forms were developed using mechanics principles, recent criteria have been developed using empirical methods based on subsets of head impact data. In this study, a single-degree-of-freedom (sDOF) mechanical analog was developed to parametrically investigate the link between rotational head kinematics and brain deformation. Model efficacy was assessed by comparing the maximum magnitude of displacement to strain-based brain injury predictors from finite element (FE) human head models. A series of idealized rotational pulses covering a broad range of acceleration and velocity magnitudes (0.1–15 krad/s2 and 1–100 rad/s) with durations between 1 and 3000 ms were applied to the mechanical models about each axis of the head. Results show that brain deformation magnitude is governed by three categories of rotational head motion each distinguished by the duration of the pulse relative to the brain's natural period: for short-duration pulses, maximum brain deformation depended primarily on angular velocity magnitude; for long-duration pulses, brain deformation depended primarily on angular acceleration magnitude; and for pulses relatively close to the natural period, brain deformation depended on both velocity and acceleration magnitudes. These results suggest that brain deformation mechanics can be adequately explained by simple mechanical systems, since FE model responses and experimental brain injury tolerances exhibited similar patterns to the sDOF model. Finally, the sDOF model was the best correlate to strain-based responses and highlighted fundamental limitations with existing rotational-based brain injury metrics.

References

References
1.
CDC,
2016
, “Rates of TBI-Related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2001–2010 | Concussion | Traumatic Brain Injury | CDC Injury Center,” Centers for Disease Control and Prevention, Atlanta, GA, accessed June 4, 2016, http://www.cdc.gov/traumaticbraininjury/data/rates.html
2.
U.S. Census Bureau,
2016
, “Census.gov,” U.S. Census Bureau, Washington, DC, accessed June 4, 2016, http://www.census.gov/
3.
Taylor, C. A.
,
Bell, J. M.
,
Breiding, M. J.
, and
Xu, L.
, 2017, “
Traumatic Brain Injury—Related Emergency Department Visits, Hospitalizations, and Deaths—United States
,”
Surveill. Summ.
,
66
(9), pp. 1–16.https://www.cdc.gov/mmwr/volumes/66/ss/ss6609a1.htm
4.
Santiago
,
L. A.
,
Oh
,
B. C.
,
Dash
,
P. K.
,
Holcomb
,
J. B.
, and
Wade
,
C. E.
,
2012
, “
A Clinical Comparison of Penetrating and Blunt Traumatic Brain Injuries
,”
Brain Inj.
,
26
(
2
), pp.
107
125
.
5.
Harmon
,
K. G.
,
Drezner
,
J. A.
,
Gammons
,
M.
,
Guskiewicz
,
K. M.
,
Halstead
,
M.
,
Herring
,
S. A.
,
Kutcher
,
J. S.
,
Pana
,
A.
,
Putukian
,
M.
, and
Roberts
,
W. O.
,
2013
, “
American Medical Society for Sports Medicine Position Statement: Concussion in Sport
,”
Br. J. Sports Med.
,
47
(
1
), pp.
15
26
.
6.
DVBIC,
2016
, “DoD Worldwide Numbers for TBI,” Defense and Veterans Brain Injury Center, Silver Spring, MD, accessed Nov. 16, 2016, http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi
7.
CDC,
2016
, “Report to Congress on Traumatic Brain Injury in the United States: Understanding the Public Health Problem Among Current and Former Military Personnel | Concussion | Traumatic Brain Injury | CDC Injury Center,” Centers for Disease Control and Prevention, Atlanta, GA, accessed Nov. 16, 2016, http://www.cdc.gov/traumaticbraininjury/pubs/congress_military.html
8.
NHTSA, 1996, “NHTSA Final Economic Assessment, FMVSS No. 201, Upper Interior Head Protection,” National Highway Traffic Safety Administration, Washington, DC, Docket No. 1996-1762-0003.
9.
NOCSAE,
2012
, “Standard Test Method and Equipment Used in Evaluating the Performance Characteristics of Protective Headgear/Equipment,” National Operating Committee on the Standards for Athletic Equipment, Overland Park, KS, Standard No.
ND001-15m17
.http://nocsae.org/wp-content/files_mf/1490213565ND00115m17DropTestMethod.pdf
10.
Rowson
,
S.
,
Brolinson
,
G.
,
Goforth
,
M.
,
Dietter
,
D.
, and
Duma
,
S.
,
2009
, “
Linear and Angular Head Acceleration Measurements in Collegiate Football
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061016
.
11.
Camarillo
,
D. B.
,
Shull
,
P. B.
,
Mattson
,
J.
,
Shultz
,
R.
, and
Garza
,
D.
,
2013
, “
An Instrumented Mouthguard for Measuring Linear and Angular Head Impact Kinematics in American Football
,”
Ann. Biomed. Eng.
,
41
(
9
), pp.
1939
1949
.
12.
Gabler
,
L. F.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2016
, “
Assessment of Kinematic Brain Injury Metrics for Predicting Strain Responses in Diverse Automotive Impact Conditions
,”
Ann. Biomed. Eng.
,
44
(
12
), pp.
3705
3718
.
13.
Stalnaker
,
R. L.
,
Fogle
,
J. L.
, and
McElhaney
,
J. H.
,
1971
, “
Driving Point Impedance Characteristics of the Head
,”
J. Biomech.
,
4
(
2
), pp.
127
139
.
14.
Fan
,
W. R.
,
1971
, “Internal Head Injury Assessment,”
SAE
Paper No. 710870.
15.
Brinn
,
J.
, and
Staffeld
,
S. E.
,
1970
, “Evaluation of Impact Test Accelerations: A Damage Index for the Head and Torso,”
SAE
Paper No. 700902.
16.
Slattenschek
,
A.
, and
Tauffkirchen
,
W.
,
1970
, “Critical Evaluation of Assessment Methods for Head Impact Applied in Appraisal of Brain Injury Hazard, in Particular in Head Impact on Windshields,”
SAE
Paper No. 700426.
17.
Gierke
,
V. H. E.
,
1964
, “
Transient Acceleration, Vibration and Noise Problems in Space Flight
,”
Bioastronautics
,
Karl E
.
Schaefer
, ed.,
MacMillan
,
New York
, p.
61
.
18.
Holbourn
,
A. H. S.
,
1943
, “
Mechanics of Head Injuries
,”
Lancet
,
242
(
6267
), pp.
438
441
.
19.
Goldsmith
,
W.
,
1972
,
Biomechanics of Head Injury
,
Prentice Hall
,
Englewood Cliffs, NJ
.
20.
Gadd
,
C. W.
,
1966
, “Use of a Weighted-Impulse Criterion for Estimating Injury Hazard,”
SAE
Paper No. 660793.
21.
Patrick
,
L. M.
,
Lissner
,
H. R.
, and
Gurdjian
,
E. S.
,
1963
, “
Survival by Design: Head Protection
,”
Seventh Stapp Car Crash and Field Demonstration Conference
, Los Angeles, CA, pp.
483
499
.
22.
Versace
,
J.
,
1971
, “A Review of the Severity Index,”
SAE
Paper No. 710881.
23.
Kimpara
,
H.
, and
Iwamoto
,
M.
,
2012
, “
Mild Traumatic Brain Injury Predictors Based on Angular Accelerations During Impacts
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
114
126
.
24.
Kimpara
,
H.
,
Nakahira
,
Y.
,
Iwamoto
,
M.
,
Rowson
,
S.
, and
Duma
,
S.
,
2011
, “
Head Injury Prediction Methods Based on 6 Degree of Freedom Head Acceleration Measurements During Impact
,”
Int. J. Automot. Eng.
,
2
(
2
), pp.
13
19
.https://www.jstage.jst.go.jp/article/jsaeijae/2/2/2_20114490/_article
25.
Greenwald
,
R. M.
,
Gwin
,
J. T.
,
Chu
,
J. J.
, and
Crisco
,
J. J.
,
2008
, “
Head Impact Severity Measures for Evaluating Mild Traumatic Brain Injury Risk Exposure
,”
Neurosurgery
,
62
(
4
), p.
789
.
27.
Takhounts
,
E. G.
,
Ridella
,
S. A.
,
Hasija
,
V.
,
Tannous
,
R. E.
,
Campbell
,
J. Q.
,
Malone
,
D.
,
Danelson
,
K.
,
Stitzel
,
J.
,
Rowson
,
S.
, and
Duma
,
S.
,
2008
, “
Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model
,”
Stapp Car Crash J.
,
52
, pp.
1
31
.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjLtsvqg8PXAhXHSCYKHeg4DLEQFgguMAE&url=https%3A%2F%2Fwww.nhtsa.gov%2FDOT%2FNHTSA%2FNVS%2FBiomechanics%2520%26%2520Trauma%2FSIMon%2FStapp2008%2520Takhounts.pdf&usg=AOvVaw0NkHpBpRQzwayhNLNAPnJb
28.
Mao
,
H.
,
Zhang
,
L.
,
Jiang
,
B.
,
Genthikatti
,
V. V.
,
Jin
,
X.
,
Zhu
,
F.
,
Makwana
,
R.
,
Gill
,
A.
,
Jandir
,
G.
,
Singh
,
A.
, and
Yang
,
K. H.
,
2013
, “
Development of a Finite Element Human Head Model Partially Validated With Thirty Five Experimental Cases
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111002
.
29.
Ji
,
S.
, and
Zhao
,
W.
,
2014
, “
A Pre-Computed Brain Response Atlas for Instantaneous Strain Estimation in Contact Sports
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1877
1895
.
30.
Takhounts
,
E. G.
,
Craig
,
M. J.
,
Moorhouse
,
K.
,
McFadden
,
J.
, and
Hasija
,
V.
,
2013
, “
Development of Brain Injury Criteria (BrIC)
,”
Stapp Car Crash J.
,
57
, pp.
243
266
.https://www.ncbi.nlm.nih.gov/pubmed/24435734
31.
SAE International, 1995, “
J211/1: Instrumentation for Impact Test: Part 1—Electronic Instrumentation
,” SAE International, Warrendale, PA, Standard No.
J211/1_199503
.http://standards.sae.org/j211/1_199503/
32.
Bandak
,
F. A.
,
Zhang
,
A. X.
,
Tannous
,
R. E.
,
DiMasi
,
F.
,
Masiello
,
P.
, and
Eppinger
,
R. H.
,
2001
, “
Simon: A Simulated Injury Monitor; Application to Head Injury Assessment
,”
SAE
Paper No. 2001-06-0222.http://papers.sae.org/2001-06-0222/
33.
Panzer
,
M. B.
,
Myers
,
B. S.
,
Capehart
,
B. P.
, and
Bass
,
C. R.
,
2012
, “
Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1530
1544
.
34.
Gabler
,
L. F.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2016
, “Investigating Brain Injury Tolerance in the Sagittal Plane Using a Finite Element Model of the Human Head,”
Int. J. Automot. Eng.
,
7
(1), pp. 37–43https://www.jstage.jst.go.jp/article/jsaeijae/7/1/7_20164082/_article.
35.
Rowson
,
S.
,
Duma
,
S. M.
,
Beckwith
,
J. G.
,
Chu
,
J. J.
,
Greenwald
,
R. M.
,
Crisco
,
J. J.
,
Brolinson
,
P. G.
,
Duhaime
,
A.-C.
,
McAllister
,
T. W.
, and
Maerlender
,
A. C.
,
2012
, “
Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
1
13
.
36.
Payne
,
P. R.
,
1962
, “
The Dynamics of Human Restraint Systems
,”
Impact Acceleration Stress: A Symposium
, San Antonio, TX, Nov. 27–29, pp.
195
257
.https://www.nap.edu/read/20270/chapter/24
37.
Kornhauser
,
M.
, and
Lawton
,
R. W.
,
1961
, “
Impact Tolerance of Mammals
,”
Planet. Space Sci.
,
7
, pp.
386
394
.
38.
Laksari
,
K.
,
Wu
,
L. C.
,
Kurt
,
M.
,
Kuo
,
C.
, and
Camarillo
,
D. C.
,
2015
, “
Resonance of Human Brain Under Head Acceleration
,”
J. R. Soc. Interface
,
12
(
108
), p. 20150331.
39.
Ommaya
,
A. K.
, and
Hirsch
,
A. E.
,
1971
, “
Tolerances for Cerebral Concussion From Head Impact and Whiplash in Primates
,”
J. Biomech.
,
4
(
1
), pp.
13
21
.
40.
Thibault
,
L. E.
, and
Gennarelli
,
T. A.
,
1985
, “Biomechanics of Diffuse Brain Injuries,”
SAE
Paper No. 856022.http://papers.sae.org/856022/
41.
Margulies
,
S. S.
, and
Thibault
,
L. E.
,
1992
, “
A Proposed Tolerance Criterion for Diffuse Axonal Injury in Man
,”
J. Biomech.
,
25
(
8
), pp.
917
923
.
42.
Yanaoka
,
T.
,
Dokko
,
Y.
, and
Takahashi
,
Y.
,
2015
, “Investigation on an Injury Criterion Related to Traumatic Brain Injury Primarily Induced by Head Rotation,”
SAE
Paper No. 2015-01-1439.
43.
Newman
,
J. A.
,
Shewchenko
,
N.
, and
Welbourne
,
E.
,
2000
, “
A Proposed New Biomechanical Head Injury Assessment Function: The Maximum Power Index
,”
Stapp Car Crash J.
,
44
, pp.
215
247
.https://www.ncbi.nlm.nih.gov/pubmed/17458729
44.
Sullivan
,
S.
,
Eucker
,
S. A.
,
Gabrieli
,
D.
,
Bradfield
,
C.
,
Coats
,
B.
,
Maltese
,
M. R.
,
Lee
,
J.
,
Smith
,
C.
, and
Margulies
,
S. S.
,
2015
, “
White Matter Tract-Oriented Deformation Predicts Traumatic Axonal Brain Injury and Reveals Rotational Direction-Specific Vulnerabilities
,”
Biomech. Model. Mechanobiol.
,
14
(
4
), pp.
877
896
.
45.
Hernandez
,
F.
,
Wu
,
L. C.
,
Yip
,
M. C.
,
Laksari
,
K.
,
Hoffman
,
A. R.
,
Lopez
,
J. R.
,
Grant
,
G. A.
,
Kleiven
,
S.
, and
Camarillo
,
D. B.
,
2015
, “
Six Degree-of-Freedom Measurements of Human Mild Traumatic Brain Injury
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1918
1934
.
46.
Elkin
,
B. S.
, and
Morrison
,
B.
, III
,
2007
, “
Region-Specific Tolerance Criteria for the Living Brain
,”
Stapp Car Crash J.
,
51
, pp.
127
138
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.327.2763&rep=rep1&type=pdf
47.
Zhao
,
W.
,
Cai
,
Y.
,
Li
,
Z.
, and
Ji
,
S.
,
2017
, “
Injury Prediction and Vulnerability Assessment Using Strain and Susceptibility Measures of the Deep White Matter
,”
Biomech. Model. Mechanobiol.
,
16
(5), pp.
1
19
.
48.
King
,
W.
,
2013
,
Human Impact Response: Measurement and Simulation
,
Springer, New York
.
49.
Zhao
,
W.
, and
Ji
,
S.
,
2016
, “
Brain Strain Uncertainty Due to Shape Variation in and Simplification of Head Angular Velocity Profiles
,”
Biomech. Model. Mechanobiol.
,
16
(2), pp.
449
461
.
50.
Rao
,
S. S.
, and
Yap
,
F. F.
,
1995
,
Mechanical Vibrations
,
Addison-Wesley
,
New York
.
You do not currently have access to this content.