Predicting aortic aneurysm ruptures is a complex problem that has been investigated by many research teams over several decades. Work on this issue is notably complex and involves both the mechanical behavior of the artery and the blood flow. Magnetic resonance imaging (MRI) can provide measurements concerning the shape of an organ and the blood that flows through it. Measuring local distortion of the artery wall is the first essential factor to evaluate in a ruptured artery. This paper aims to demonstrate the feasibility of this measure using MRI on a phantom of an abdominal aortic aneurysm (AAA) with realistic shape. The aortic geometry is obtained from a series of cine-MR images and reconstructed using Mimics software. From 4D flow and MRI measurements, the field of velocity is determined and introduced into a computational fluid dynamic (CFD) model to determine the mechanical boundaries applied on the wall artery (pressure and ultimately wall shear stress (WSS)). These factors are then converted into a solid model that enables wall deformations to be calculated. This approach was applied to a silicone phantom model of an AAA reconstructed from a patient's computed tomography-scan examination. The calculated deformations were then compared to those obtained in identical conditions by stereovision. The results of both methods were found to be close. Deformations of the studied AAA phantom with complex shape were obtained within a gap of 12% by modeling from MR data.

References

References
1.
Nicholls
,
S. C.
,
Gardner
,
J. B.
,
Meissner
,
M. H.
, and
Johansen
,
K. H.
,
1998
, “
Rupture in Small Abdominal Aortic Aneurysms
,”
J. Vasc. Surg
,
28
, pp.
884
888
.
2.
Baxter
,
B. T.
,
Terrin
,
M. C.
, and
Dalman
,
R. L.
,
2008
, “
Medical Management of Small Abdominal Aortic Aneurysms
,”
Circulation.
117
(14), pp.
1883
88
.
3.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
4.
Rodriguez
,
J. F.
,
Ruiz
,
C.
,
Doblaré
,
M.
, and
Holzapfel
,
G. A.
, 2008, “
Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry and Material Anisotropy
,”
ASME J. Biomech. Eng.
,
130
(2), p. 021023.
5.
Achille
,
P.
,
Celi
,
S.
,
Di Puccio
,
F.
, and
Forte
,
P.
,
2011
, “
Anisotropic AAA: Computational Comparison Between Four and Two Fibers Family Material Models
,”
J. Biomech.
,
44
(
13
), pp.
2418
2426
.
6.
Reeps
,
C.
,
Gee
,
M.
,
Maier
,
A.
,
Gurdan
,
M.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
,
2010
, “
The Impact of Model Assumptions on Results of Computational Mechanics in Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
51
(
3
), pp.
679
688
.
7.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress versus Diameter
,”
J. Vasc. Surg.
,
37
(4), pp.
724
732
.
8.
Choudhury
,
N.
,
Bouchot
,
O.
,
Rouleau
,
R.
,
Tremblay
,
D.
,
Cartier
,
R.
,
Butany
,
J.
,
Mongrain
,
R.
, and
Leaska
,
R. L.
,
2009
, “
Local Mechanical and Structural Properties of Healthy and Diseased Human Ascending Aorta Tissue
,”
Cardiovasc. Pathol.
,
18
(2), pp.
83
91
.
9.
Iliopoulos
,
D. C.
,
Deveja
,
R. P.
,
Kritharis
,
E. P.
,
Perrea
,
D.
,
Sionis
,
G. D.
,
Toutouzas
,
K.
,
Stefanadis
,
C.
, and
Sokolis
,
D. P.
,
2009
, “
Regional and Directional Variations in the Mechanical Properties of Ascending Thoracic Aortic Aneurysms
,”
Med. Eng. Phys.
,
31
(
1
), pp.
1
9
.
10.
Duprey
,
A.
,
Khanafer
,
K.
,
Schlicht
,
M.
,
Avril
,
S.
,
Williams
,
D.
, and
Berguer
,
R.
,
2010
, “
In Vitro Characterisation of Physiological and Maximum Elastic Modulus of Ascending Thoracic Aortic Aneurysms Using Uniaxial Tensile Testing
,”
Eur. J. Vasc. Endovasc. Surg.
,
39
(
6
), pp.
700
707
.
11.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Shojaei
,
A.
, and
Faghihi
,
S.
,
2013
, “
Measurement of the Uniaxial Mechanical Properties of Healthy and Atherosclerotic Human Coronary Arteries
,”
Mater. Sci. Eng. C, Mater. Biol. Appl.
,
33
(
5
), pp.
2550
2554
.
12.
Tong
,
J.
,
Cohnert
,
T.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2011
, “
Effects of Age on the Elastic Properties of the Intraluminal Thrombus and the Thrombus-Covered Wall in Abdominal Aortic Aneurysms: Biaxial Extension Behavior and Material Modeling
,”
Eur. J. Vasc. Endovasc. Surg.
,
42
(2), pp.
207
219
.
13.
Avril
,
S.
,
Badel
,
P.
, and
Duprey
,
A.
,
2010
, “
Anisotropic and Hyperelastic Identification of In Vitro Human Arteries From Full Field Optical Measurements
,”
J. Biomech.
,
43
(
15
), pp.
2978
2985
.
14.
Toungara
,
M.
,
Chagnon
,
G.
, and
Geindreau
,
C.
,
2012
, “
Numerical Analysis of the Wall Stress in Abdominal Aortic Aneurysm: Influence of the Material Model Near-Incompressibility
,”
J. Mech. Med. Bio
,
12
(
1
), p. 1250005.
15.
Scotti
,
C. M.
, and
Finol
,
E. A.
,
2007
, “
Compliant Biomechanics of Abdominal Aortic Aneurysms: A Fluid–Structure Interaction Study
,”
Comput. Struct.
,
85
(
11–14
), pp.
1097
1113
.
16.
Wang
,
D. H. J.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2002
, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
36
(3), pp.
598
604
.
17.
Pham
,
T.
,
Martin
,
C.
,
Elefteriades
,
J.
, and
Sun
,
W.
,
2013
, “
Biomechanical Characterization of Ascending Aortic Aneurysm With Concomitant Bicuspid Aortic Valve and Bovine Aortic Arch
,”
Acta Biomater.
,
9
(
8
), pp.
7927
7936
.
18.
Salsac
,
A. V.
,
Sparks
,
S. R.
,
Chomaz
,
J. M.
, and
Lasheras
,
J. C.
,
2006
, “
Evolution of the Wall Shear Stresses During the Progressive Enlargement of Symmetric Abdominal Aortic Aneurysms
,”
J. Fluid Mech.
,
550
, pp.
19
51
.
19.
Deplano
,
V.
,
Meyer
,
C.
,
Guivier-Curien
,
C.
, and
Bertrand
,
E.
,
2013
, “
New Insights Into the Understanding of Flow Dynamics in an In-Vitro Model for Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
,
35
(
6
), pp.
800
809
.
20.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Schwaab
,
M.
, and
Conklin
,
B. S.
,
2008
, “
Arterial Fluid Mechanics Modeling With the Stabilized Space–Time fluid–Structure Interaction Technique
,”
Int. J. Num. Methods Fluids
,
57
(
5
), pp.
601
629
.
21.
Ene
,
F.
,
Gachon
,
C.
,
Delassus
,
P.
,
Carroll
,
R.
,
Stefanov
,
F.
,
O'Flynn
,
P.
, and
Morris
,
L.
,
2011
, “
In Vitro Evaluation of the Effects of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Dynamics
,”
Med. Eng. Phys.
,
33
(8), pp.
957
966
.
22.
Morris
,
L.
,
O'Donnell
,
P.
,
Delassus
,
P.
, and
McGloughlin
,
T.
,
2004
, “
Experimental Assessment of Stress Patterns in Abdominal Aortic Aneurysms Using the Photoelastic Method
,”
Strain
,
40
(
4
), pp.
165
172
.
23.
Bihari
,
P.
,
Shelke
,
A.
,
New
,
T. H.
,
Mularczyk
,
M.
,
Nelson
,
K.
,
Schmandra
,
T.
,
Knez
,
P.
, and
Schmitz-Rixen
,
T.
,
2013
, “
Strain Measurement of Abdominal Aortic Aneurysm With Real-Time 3D Ultrasound Speckle Tracking
,”
Eur. J. Vasc. Endovasc. Surg.
,
45
(
4
), pp.
315
323
.
24.
Rigdway
,
J. P.
,
2016
, “
Cardiovascular Magnetic Resonance Physics for Clinicians— Part I
,”
J. Cardiovasc. Magn. Reson.
,
12
(1), pp.
71
80
.
25.
Markl
,
M.
,
Schnell
,
S.
,
Wu
,
C.
,
Bollache
,
E.
,
Jarvis
,
K.
,
Barker
,
A. J.
,
Robinson
,
J. D.
, and
Rigsby
,
C. K.
,
2016
, “
Advanced Flow MRI: Emerging Techniques and Applications
,”
Clin. Radiol.
,
71
(
8
), pp.
779
795
.
26.
Doyle
,
B. J.
,
Killion
,
J.
, and
Callanan
,
A.
,
2012
, “
Use of the Photoelastic Method and Finite Element Analysis in the Assessment of Wall Strain in Abdominal Aortic Aneurysm Models
,”
J. Biomech.
,
45
(
10
), pp.
1759
1768
.
27.
Khodarahmi
,
I.
,
Shakeri
,
M.
,
Kotys-Traughber
,
M.
,
Fischer
,
S.
,
Sharp
,
M. K.
, and
Amini
,
A. A.
,
2014
, “
In Vitro Validation of Flow Measurement With Phase Contrast MRI at 3 Tesla Using Stereoscopic Particle Image Velocimetry and Stereoscopic Particle Image Velocimetry-Based Computational Fluid Dynamics
,”
J. Magn. Res. Imaging
,
39
(6), pp.
1477
1485
.
28.
Van Ooij
,
P.
,
Guédon
,
A.
,
Poelma
,
C.
,
Schneiders
,
J.
,
Rutten
,
M. C. M.
,
Marquer
,
H. A.
,
Majoie
,
C. B.
,
van Bavel
,
E.
, and
Nederveen
,
A. J.
,
2012
, “
Complex Flow Patterns in a Real‐Size Intracranial Aneurysm Phantom: Phase Contrast MRI Compared With Particle Image Velocimetry and Computational Fluid Dynamics
,”
NMR Biomed.
,
25
(1), pp.
14
26
.
29.
Wang
,
Y.
,
Joannic
,
D.
,
Delassus
,
P.
,
Lalande
,
A.
,
Juillion
,
P.
, and
Fontaine
,
J. F.
,
2015
, “
Comparison of the Strain Field of Abdominal Aortic Aneurysm Measured by MRI and Stereovision: A Feasibility Study for Prediction of the Risk of Rupture of AAA
,”
J. Biomech.
,
48
(
6
), pp.
1158
1164
.
30.
Satriano
,
A.
,
Rivolo
,
S.
,
Martufin
,
G.
,
Finol
,
E. A.
, and
Di Martino
,
E. S.
,
2015
, “
In Vivo Strain Assessment of the Abdominal Aortic Aneurysm
,”
J. Biomech.
,
48
(2), pp.
354
360
.
31.
Gatehouse
,
P. D.
,
Keegan
,
J.
,
Crowe
,
L. A.
,
Masood
,
S.
,
Mohiaddin
,
R. H.
,
Kreitner
,
K.-F.
, and
Firmin
,
D. N.
,
2005
, “
Applications of Phase-Contrast Flow and Velocity Imaging in Cardiovascular MRI
,”
Eur. Radiol.
,
15
(10), pp.
2172
2184
.
32.
Markle
,
M.
,
Frydrychowicz
,
A.
,
Kozerke
,
S.
,
Hope
,
M.
, and
Wieben
,
O.
,
2012
, “
4D Flow MRI
,”
J. Magn. Reson. Imaging
,
36
(5), pp.
1015
1036
.
33.
Martins
,
P. A.
,
Natal Jorge
,
R. M.
, and
Ferreira
,
J. M.
,
2006
, “
A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues
,”
Strain
,
42
(
3
), pp.
135
147
.
34.
Stankovic
,
Z.
,
Allen
,
B. D.
,
Garcia
,
J.
,
Jarvis
,
K. B.
, and
Markl
,
M.
,
2014
, “
4D Flow Imaging With MRI
,”
Cardiovasc. Diagn. Ther.
,
4
(
2
), pp.
173
192
.
35.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(
1–3
), pp.
1
48
.
36.
Johnson
,
M.
, and
Tarbell
,
J. M.
,
2001
, “
A Biphasic, Anisotropic Model of the Aortic Wall
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
52
71
.
37.
Masson
,
I.
,
Boutouyrie
,
P.
,
Laurent
,
S.
,
Humphrey
,
J. D.
, and
Zidi
,
M.
,
2008
, “
Characterization of Arterial Wall Mechanical Behavior and Stresses From Human Clinical Data
,”
J. Biomech
,
41
(12), pp.
2618
2627
.
38.
Boyd
,
A. J.
,
Kuhn
,
D. C.
,
Lozowy
,
R. J.
, and
Kulbisky
,
G. P.
,
2016
, “
Low Wall Shear Stress Predominates at Sites of Abdominal Aortic Aneurysm Rupture
,”
J. Vasc. Surg
,
63
(
6
), pp.
1613
1619
.
You do not currently have access to this content.