Connective tissue mechanics is highly nonlinear, exhibits a strong Poisson's effect, and is associated with significant collagen fiber re-arrangement. Although the general features of the stress–strain behavior have been discussed extensively, the Poisson's effect received less attention. In general, the relationship between the microscopic fiber network mechanics and the macroscopic experimental observations remains poorly defined. The objective of the present work is to provide additional insight into this relationship. To this end, results from models of random collagen networks are compared with experimental data on reconstructed collagen gels, mouse skin dermis, and the human amnion. Attention is devoted to the mechanism leading to the large Poisson's effect observed in experiments. The results indicate that the incremental Poisson's contraction is directly related to preferential collagen orientation. The experimentally observed downturn of the incremental Poisson's ratio at larger strains is associated with the confining effect of fibers transverse to the loading direction and contributing little to load bearing. The rate of collagen orientation increases at small strains, reaches a maximum, and decreases at larger strains. The peak in this curve is associated with the transition of the network deformation from bending dominated, at small strains, to axially dominated, at larger strains. The effect of fiber tortuosity on network mechanics is also discussed, and a comparison of biaxial and uniaxial loading responses is performed.

References

References
1.
Hulmes
,
D.
,
2008
,
Collagen Diversity, Synthesis and Assembly
,
Springer
,
Boston, MA
, pp.
15
47
.
2.
Hansen
,
K. A.
,
Weiss
,
J. A.
, and
Barton
,
J. K.
,
2002
, “
Recruitment of Tendon Crimp With Applied Tensile Strain
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
72
77
.
3.
Thorpe
,
C. T.
,
Klemt
,
C.
,
Riley
,
G. P.
,
Birch
,
H. L.
,
Clegg
,
P. D.
, and
Screen
,
H. R.
,
2013
, “
Helical Sub-Structures in Energy-Storing Tendons Provide a Possible Mechanism for Efficient Energy Storage and Return
,”
Acta Biomater.
,
9
(
8
), pp.
7948
7956
.
4.
Szczesny
,
S. E.
,
Peloquin
,
J. M.
,
Cortes
,
D. H.
,
Kadlowec
,
J. A.
,
Soslowsky
,
L. J.
, and
Elliott
,
D. M.
,
2012
, “
Biaxial Tensile Testing and Constitutive Modeling of Human Supraspinatus Tendon
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021004
.
5.
Gusachenko
,
I.
,
Tran
,
V.
,
Houssen
,
Y. G.
,
Allain
,
J.-M.
, and
Schanne-Klein
,
M.-C.
,
2012
, “
Polarization-Resolved Second-Harmonic Generation in Tendon upon Mechanical Stretching
,”
Biophys. J.
,
102
(
9
), pp.
2220
2229
.
6.
Mansfield
,
J. C.
,
Winlove
,
C. P.
,
Moger
,
J.
, and
Matcher
,
S. J.
,
2008
, “
Collagen Fiber Arrangement in Normal and Diseased Cartilage Studied by Polarization Sensitive Nonlinear Microscopy
,”
J. Biomed. Opt.
,
13
(
4
), p.
044020
.
7.
Meng
,
Q.
,
An
,
S.
,
Damion
,
R. A.
,
Jin
,
Z.
,
Wilcox
,
R.
,
Fisher
,
J.
, and
Jones
,
A.
,
2017
, “
The Effect of Collagen Fibril Orientation on the Biphasic Mechanics of Articular Cartilage
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
439
453
.
8.
Zhang
,
S.
,
Bassett
,
D. S.
, and
Winkelstein
,
B. A.
,
2016
, “
Stretch-Induced Network Reconfiguration of Collagen Fibres in the Human Facet Capsular Ligament
,”
J. R. Soc. Interface
,
13
(
114
), p.
20150883
.
9.
Mauri
,
A.
,
Ehret
,
A. E.
,
Perrini
,
M.
,
Maake
,
C.
,
Ochsenbein-Kölble
,
N.
,
Ehrbar
,
M.
,
Oyen
,
M. L.
, and
Mazza
,
E.
,
2015
, “
Deformation Mechanisms of Human Amnion: Quantitative Studies Based on Second Harmonic Generation Microscopy
,”
J. Biomech.
,
48
(
9
), pp.
1606
1613
.
10.
Perrini
,
M.
,
Mauri
,
A.
,
Ehret
,
A. E.
,
Ochsenbein-Kölble
,
N.
,
Zimmermann
,
R.
,
Ehrbar
,
M.
, and
Mazza
,
E.
,
2015
, “
Mechanical and Microstructural Investigation of the Cyclic Behavior of Human Amnion
,”
ASME J. Biomech. Eng.
,
137
(
6
), p.
061010
.
11.
Bancelin
,
S.
,
Lynch
,
B.
,
Bonod-Bidaud
,
C.
,
Ducourthial
,
G.
,
Psilodimitrakopoulos
,
S.
,
Dokládal
,
P.
,
Allain
,
J.-M.
,
Schanne-Klein
,
M.-C.
, and
Ruggiero
,
F.
,
2015
, “
Ex Vivo Multiscale Quantitation of Skin Biomechanics in Wild-Type and Genetically-Modified Mice Using Multiphoton Microscopy
,”
Sci. Rep.
,
5
, p. 17635.
12.
Jayyosi
,
C.
,
Affagard
,
J.-S.
,
Ducourthial
,
G.
,
Bonod-Bidaud
,
C.
,
Lynch
,
B.
,
Bancelin
,
S.
,
Ruggiero
,
F.
,
Schanne-Klein
,
M.-C.
,
Allain
,
J.-M.
, and
Bruyère-Garnier
,
K.
,
2017
, “
Affine Kinematics in Planar Fibrous Connective Tissues: An Experimental Investigation
,”
Biomech. Model. Mechanobiol.
,
16
(4), pp.
1459
1473
.
13.
Lynch
,
B.
,
Bancelin
,
S.
,
Bonod-Bidaud
,
C.
,
Gueusquin
,
J.-B.
,
Ruggiero
,
F.
,
Schanne-Klein
,
M.-C.
, and
Allain
,
J.-M.
,
2017
, “
A Novel Microstructural Interpretation for the Biomechanics of Mouse Skin Derived From Multiscale Characterization
,”
Acta Biomater.
,
50
, pp.
302
311
.
14.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
,
Biomechanical Modelling at the Molecular, Cellular and Tissue Levels
,
Springer Science & Business Media
, Vienna, Austria.
15.
Ault
,
H.
, and
Hoffman
,
A.
,
1992
, “
A Composite Micromechanical Model for Connective Tissues—Part I: Theory
,”
ASME J. Biomech. Eng
,
114
(
1
), pp.
137
141
.
16.
Cortes
,
D. H.
, and
Elliott
,
D. M.
,
2012
, “
Extra-Fibrillar Matrix Mechanics of Annulus Fibrosus in Tension and Compression
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
781
790
.
17.
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2007
, “
Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model
,”
J. Orthopaedic Res.
,
25
(
4
), pp.
508
516
.
18.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast. Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
19.
Lanir
,
Y.
,
1979
, “
A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collagenous Tissues
,”
J. Biomech.
,
12
(
6
), pp.
423
436
.
20.
Martufi
,
G.
, and
Gasser
,
T. C.
,
2011
, “
A Constitutive Model for Vascular Tissue That Integrates Fibril, Fiber and Continuum Levels With Application to the Isotropic and Passive Properties of the Infrarenal Aorta
,”
J. Biomech.
,
44
(
14
), pp.
2544
2550
.
21.
Raghupathy
,
R.
, and
Barocas
,
V. H.
,
2009
, “
A Closed-Form Structural Model of Planar Fibrous Tissue Mechanics
,”
J. Biomech.
,
42
(
10
), pp.
1424
1428
.
22.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F.
,
2003
, “
Deformation of Cross-Linked Semiflexible Polymer Networks
,”
Phys. Rev. Lett.
,
91
(
10
), p.
108102
.
23.
Wilhelm
,
J.
, and
Frey
,
E.
,
2003
, “
Elasticity of Stiff Polymer Networks
,”
Phys. Rev. Lett.
,
91
(
10
), p.
108103
.
24.
DiDonna
,
B.
, and
Lubensky
,
T.
,
2005
, “
Nonaffine Correlations in Random Elastic Media
,”
Phys. Rev. E
,
72
(
6
), p.
066619
.
25.
Hatami-Marbini
,
H.
, and
Picu
,
R.
,
2008
, “
Scaling of Nonaffine Deformation in Random Semiflexible Fiber Networks
,”
Phys. Rev. E
,
77
(
6
), p.
062103
.
26.
Picu
,
R.
,
2011
, “
Mechanics of Random Fiber Networks—A Review
,”
Soft Matter
,
7
(
15
), pp.
6768
6785
.
27.
Broedersz
,
C. P.
, and
MacKintosh
,
F. C.
,
2014
, “
Modeling Semiflexible Polymer Networks
,”
Rev. Mod. Phys.
,
86
(
3
), p.
995
.
28.
Billiar
,
K.
, and
Sacks
,
M.
,
1997
, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
(
7
), pp.
753
756
.
29.
Gilbert
,
T. W.
,
Sacks
,
M. S.
,
Grashow
,
J. S.
,
Woo
,
S. L.-Y.
,
Badylak
,
S. F.
, and
Chancellor
,
M. B.
,
2006
, “
Fiber Kinematics of Small Intestinal Submucosa Under Biaxial and Uniaxial Stretch
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
890
898
.
30.
Guerin
,
H. A. L.
, and
Elliott
,
D. M.
,
2006
, “
Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load
,”
J. Biomech.
,
39
(
8
), pp.
1410
1418
.
31.
Lake
,
S. P.
,
Cortes
,
D. H.
,
Kadlowec
,
J. A.
,
Soslowsky
,
L. J.
, and
Elliott
,
D. M.
,
2012
, “
Evaluation of Affine Fiber Kinematics in Human Supraspinatus Tendon Using Quantitative Projection Plot Analysis
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
197
205
.
32.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Multiscale Modeling Predicts Tissue-Level and Network-Level Fiber Reorganization in Stretched Cell-Compacted Collagen Gels
,”
Proc. Natl. Acad. Sci.
,
106
(
42
), pp.
17675
17680
.
33.
Storm
,
C.
,
Pastore
,
J. J.
,
MacKintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2004
, “Nonlinear Elasticity in Biological Gels,” preprint
arXiv: cond-mat/0406016
.https://arxiv.org/ftp/cond-mat/papers/0406/0406016.pdf
34.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.
35.
Zhang
,
L.
,
Lake
,
S. P.
,
Lai
,
V. K.
,
Picu
,
C. R.
,
Barocas
,
V. H.
, and
Shephard
,
M. S.
,
2012
, “
A Coupled Fiber-Matrix Model Demonstrates Highly Inhomogeneous Microstructural Interactions in Soft Tissues Under Tensile Load
,”
ASME J. Biomech. Eng.
,
135
(
1
), p.
011008
.
36.
Zhang
,
L.
,
Lake
,
S.
,
Barocas
,
V.
,
Shephard
,
M.
, and
Picu
,
R.
,
2013
, “
Cross-Linked Fiber Network Embedded in an Elastic Matrix
,”
Soft Matter
,
9
(
28
), pp.
6398
6405
.
37.
Ban
,
E.
,
Barocas
,
V. H.
,
Shephard
,
M. S.
, and
Picu
,
R. C.
,
2016
, “
Softening in Random Networks of Non-Identical Beams
,”
J. Mech. Phys. Solids
,
87
, pp.
38
50
.
38.
Borodulina
,
S.
,
Motamedian
,
H. R.
, and
Kulachenko
,
A.
,
2016
, “
Effect of Fiber and Bond Strength Variations on the Tensile Stiffness and Strength of Fiber Networks
,”
Int. J. Solids Struct.
, epub.
39.
Kallmes
,
O.
, and
Corte
,
H.
,
1960
, “
The Structure of Paper—I: The Statistical Geometry of an Ideal Two Dimensional Fiber Network
,”
Tappi J.
,
43
(
9
), pp.
737
752
.
40.
Shahsavari
,
A.
, and
Picu
,
R.
,
2013
, “
Size Effect on Mechanical Behavior of Random Fiber Networks
,”
Int. J. Solids Struct.
,
50
(
20
), pp.
3332
3338
.
41.
Heussinger
,
C.
, and
Frey
,
E.
,
2007
, “
Role of Architecture in the Elastic Response of Semiflexible Polymer and Fiber Networks
,”
Phys. Rev. E
,
75
(
1
), p.
011917
.
42.
Lake
,
S. P.
,
Hadi
,
M. F.
,
Lai
,
V. K.
, and
Barocas
,
V. H.
,
2012
, “
Mechanics of a Fiber Network Within a Non-Fibrillar Matrix: Model and Comparison With Collagen-Agarose Co-Gels
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2111
2121
.
43.
Nachtrab
,
S.
,
Kapfer
,
S. C.
,
Arns
,
C. H.
,
Madadi
,
M.
,
Mecke
,
K.
,
Schröder
, and
Turk
,
G. E.
,
2011
, “
Morphology and Linear‐Elastic Moduli of Random Network Solids
,”
Adv. Mater.
,
23
(
22–23
), pp.
2633
2637
.
44.
Pritchard
,
R. H.
,
Huang
,
Y. Y. S.
, and
Terentjev
,
E. M.
,
2014
, “
Mechanics of Biological Networks: From the Cell Cytoskeleton to Connective Tissue
,”
Soft Matter
,
10
(
12
), pp.
1864
1884
.
45.
Provenzano
,
P. P.
, and
Vanderby
,
R.
,
2006
, “
Collagen Fibril Morphology and Organization: Implications for Force Transmission in Ligament and Tendon
,”
Matrix Biol.
,
25
(
2
), pp.
71
84
.
46.
Motte
,
S.
, and
Kaufman
,
L. J.
,
2013
, “
Strain Stiffening in Collagen—I: Networks
,”
Biopolymers
,
99
(
1
), pp.
35
46
.
47.
Yang
,
Y-L.
,
Leone
,
L. M.
, and
Kaufman
,
L. J.
,
2009
, “
Elastic Moduli of Collagen Gels Can Be Predicted From Two-Dimensional Confocal Microscopy
,”
Biophys. J.
,
97
(
7
), pp.
2051
2060
.
48.
Lai
,
V. K.
,
Frey
,
C. R.
,
Kerandi
,
A. M.
,
Lake
,
S. P.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2012
, “
Microstructural and Mechanical Differences Between Digested Collagen–Fibrin Co-Gels and Pure Collagen and Fibrin Gels
,”
Acta Biomater.
,
8
(
11
), pp.
4031
4042
.
49.
Lindström
,
S. B.
,
Vader
,
D. A.
,
Kulachenko
,
A.
, and
Weitz
,
D. A.
,
2010
, “
Biopolymer Network Geometries: Characterization, Regeneration, and Elastic Properties
,”
Phys. Rev. E
,
82
(
5
), p.
051905
.
50.
Lindström
,
S. B.
,
Kulachenko
,
A.
,
Jawerth
,
L. M.
, and
Vader
,
D. A.
,
2013
, “
Finite-Strain, Finite-Size Mechanics of Rigidly Cross-Linked Biopolymer Networks
,”
Soft Matter
,
9
(
30
), pp.
7302
7313
.
51.
D'Amore
,
A.
,
Stella
,
J. A.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
,
2010
, “
Characterization of the Complete Fiber Network Topology of Planar Fibrous Tissues and Scaffolds
,”
Biomaterials
,
31
(
20
), pp.
5345
5354
.
52.
Koh
,
C.
, and
Oyen
,
M.
,
2012
, “
Branching Toughens Fibrous Networks
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
74
82
.
53.
Yang
,
L.
,
van der Werf
,
K. O.
,
Fitié
,
C. F.
,
Bennink
,
M. L.
,
Dijkstra
,
P. J.
, and
Feijen
,
J.
,
2008
, “
Mechanical Properties of Native and Cross-Linked Type I Collagen Fibrils
,”
Biophys. J.
,
94
(
6
), pp.
2204
2211
.
54.
Arevalo
,
R. C.
,
Urbach
,
J. S.
, and
Blair
,
D. L.
,
2010
, “
Size-Dependent Rheology of Type-I Collagen Networks
,”
Biophys. J.
,
99
(
8
), pp.
L65
L67
.
55.
Shahsavari
,
A.
, and
Picu
,
R.
,
2012
, “
Model Selection for Athermal Cross-Linked Fiber Networks
,”
Phys. Rev. E
,
86
(
1
), p.
011923
.
56.
Dutov
,
P.
,
Antipova
,
O.
,
Varma
,
S.
,
Orgel
,
J. P.
, and
Schieber
,
J. D.
,
2016
, “
Measurement of Elastic Modulus of Collagen Type I Single Fiber
,”
PloS One
,
11
(
1
), p.
e0145711
.
57.
Stauffer
,
D.
, and
Aharony
,
A.
,
1994
,
Introduction to Percolation Theory
,
CRC Press
, Boca Raton, FL.
58.
Sharma
,
A.
,
Licup
,
A.
,
Rens
,
R.
,
Vahabi
,
M.
,
Jansen
,
K.
,
Koenderink
,
G.
, and
MacKintosh
,
F.
,
2016
, “
Strain-Driven Criticality Underlies Nonlinear Mechanics of Fibrous Networks
,”
Phys. Rev. E
,
94
(
4
), p.
042407
.
59.
Wyart
,
M.
,
Liang
,
H.
,
Kabla
,
A.
, and
Mahadevan
,
L.
,
2008
, “
Elasticity of Floppy and Stiff Random Networks
,”
Phys. Rev. Lett.
,
101
(
21
), p.
215501
.
60.
Licup
,
A. J.
,
Münster
,
S.
,
Sharma
,
A.
,
Sheinman
,
M.
,
Jawerth
,
L. M.
,
Fabry
,
B.
,
Weitz
,
D. A.
, and
MacKintosh
,
F. C.
,
2015
, “
Stress Controls the Mechanics of Collagen Networks
,”
Proc. Natl. Acad. Sci.
,
112
(
31
), pp.
9573
9578
.
61.
Rezakhaniha
,
R.
,
Agianniotis
,
A.
,
Schrauwen
,
J. T.
,
Griffa
,
A.
,
Sage
,
D.
,
Bouten
,
C. V.
,
van de Vosse
,
F.
,
Unser
,
M.
, and
Stergiopulos
,
N.
,
2012
, “
Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy
,”
Biomech. Model. Mechanobiol.
,
11
(
3
), pp.
461
473
.
62.
Sherman
,
V. R.
,
Yang
,
W.
, and
Meyers
,
M. A.
,
2015
, “
The Materials Science of Collagen
,”
J. Mech. Behav. Biomed. Mater.
,
52
, pp.
22
50
.
63.
Depalle
,
B.
,
Qin
,
Z.
,
Shefelbine
,
S. J.
, and
Buehler
,
M. J.
,
2015
, “
Influence of Cross-Link Structure, Density and Mechanical Properties in the Mesoscale Deformation Mechanisms of Collagen Fibrils
,”
J. Mech. Behav. Biomed. Mater.
,
52
, pp.
1
13
.
64.
Eppell
,
S.
,
Smith
,
B.
,
Kahn
,
H.
, and
Ballarini
,
R.
,
2006
, “
Nano Measurements With Micro-Devices: Mechanical Properties of Hydrated Collagen Fibrils
,”
J. R. Soc. Interface
,
3
(
6
), pp.
117
121
.
65.
Svensson
,
R. B.
,
Hassenkam
,
T.
,
Hansen
,
P.
, and
Magnusson
,
S. P.
,
2010
, “
Viscoelastic Behavior of Discrete Human Collagen Fibrils
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
1
), pp.
112
115
.
66.
Miyazaki
,
H.
, and
Hayashi
,
K.
,
1999
, “
Tensile Tests of Collagen Fibers Obtained From the Rabbit Patellar Tendon
,”
Biomed. Microdev.
,
2
(
2
), pp.
151
157
.
67.
Gentleman
,
E.
,
Lay
,
A. N.
,
Dickerson
,
D. A.
,
Nauman
,
E. A.
,
Livesay
,
G. A.
, and
Dee
,
K. C.
,
2003
, “
Mechanical Characterization of Collagen Fibers and Scaffolds for Tissue Engineering
,”
Biomaterials
,
24
(
21
), pp.
3805
3813
.
68.
Lake
,
S. P.
, and
Barocas
,
V. H.
,
2011
, “
Mechanical and Structural Contribution of Non-Fibrillar Matrix in Uniaxial Tension: A Collagen-Agarose Co-Gel Model
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1891
1903
.
69.
Žagar
,
G.
,
Onck
,
P. R.
, and
van der Giessen
,
E.
,
2015
, “
Two Fundamental Mechanisms Govern the Stiffening of Cross-Linked Networks
,”
Biophys. J.
,
108
(
6
), pp.
1470
1479
.
70.
Reese
,
S. P.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2010
, “
Micromechanical Models of Helical Superstructures in Ligament and Tendon Fibers Predict Large Poisson's Ratios
,”
J. Biomech.
,
43
(
7
), pp.
1394
1400
.
71.
Rigby
,
B. J.
,
Hirai
,
N.
,
Spikes
,
J. D.
, and
Eyring
,
H.
,
1959
, “
The Mechanical Properties of Rat Tail Tendon
,”
J. General Physiol.
,
43
(
2
), pp.
265
283
.
72.
Diamant
,
J.
,
Keller
,
A.
,
Baer
,
E.
,
Litt
,
M.
, and
Arridge
,
R.
,
1972
, “
Collagen; Ultrastructure and Its Relation to Mechanical Properties as a Function of Ageing
,”
Proc. R. Soc. London B: Biol. Sci.
,
180
(
1060
), pp.
293
315
.
73.
Ban
,
E.
,
Barocas
,
V. H.
,
Shephard
,
M. S.
, and
Picu
,
C. R.
,
2016
, “
Effect of Fiber Crimp on the Elasticity of Random Fiber Networks With and Without Embedding Matrices
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041008
.
74.
Clark
,
J. M.
,
1991
, “
Variation of Collagen Fiber Alignment in a Joint Surface: A Scanning Electron Microscope Study of the Tibial plateau in Dog, Rabbit, and Man
,”
J. Orthop. Res.
,
9
(
2
), pp.
246
257
.
75.
Kääb
,
M.
,
Ap Gwynn
,
I.
, and
Nötzli
,
H.
,
1998
, “
Collagen Fibre Arrangement in the Tibial Plateau Articular Cartilage of Man and Other Mammalian Species
,”
J. Anat.
,
193
(
1
), pp.
23
34
.
76.
Wu
,
J. P.
,
Kirk
,
T. B.
, and
Zheng
,
M. H.
,
2008
, “
Study of the Collagen Structure in the Superficial Zone and Physiological State of Articular Cartilage Using a 3D Confocal Imaging Technique
,”
J. Orthop. Surg. Res.
,
3
(
1
), p.
29
.
77.
Elliott
,
D. M.
,
Narmoneva
,
D. A.
, and
Setton
,
L. A.
,
2002
, “
Direct Measurement of the Poisson's Ratio of Human Patella Cartilage in Tension
,”
ASME. J. Biomech. Eng.
,
124
(
2
), pp.
223
228
.
78.
Chang
,
D.
,
Lottman
,
L.
,
Chen
,
A.
,
Schinagl
,
R.
,
Albrecht
,
D.
,
Pedowitz
,
R.
,
Brossman
,
J.
,
Frank
,
L.
, and
Sah
,
R.
,
1999
, “
The Depth-Dependent, Multi-Axial Properties of Aged Human Patellar Cartilage in Tension
,”
Trans. Annu. Meet. Orthop. Res. Soc.
,
24
, p.
644
.https://www.ors.org/Transactions/45/0644.PDF
79.
Huang
,
C.-Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
2005
, “
Anisotropy, Inhomogeneity, and Tension–Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
,
38
(
4
), pp.
799
809
.
80.
Puxkandl
,
R.
,
Zizak
,
I.
,
Paris
,
O.
,
Keckes
,
J.
,
Tesch
,
W.
,
Bernstorff
,
S.
,
Purslow
,
P.
, and
Fratzl
,
P.
,
2002
, “
Viscoelastic Properties of Collagen: Synchrotron Radiation Investigations and Structural Model
,”
Philos. Trans. R. Soc. London B
,
357
(
1418
), pp.
191
197
.
81.
Kukreti
,
U.
, and
Belkoff
,
S. M.
,
2000
, “
Collagen Fibril D-Period May Change as a Function of Strain and Location in Ligament
,”
J. Biomech.
,
33
(
12
), pp.
1569
1574
.
82.
Chen
,
H.
,
Zhao
,
X.
,
Berwick
,
Z. C.
,
Krieger
,
J. F.
,
Chambers
,
S.
, and
Kassab
,
G. S.
,
2016
, “
Microstructure and Mechanical Property of Glutaraldehyde-Treated Porcine Pulmonary Ligament
,”
ASME J. Biomech. Eng.
,
138
(
6
), p.
061003
.
83.
Mauri
,
A.
,
Perrini
,
M.
,
Ehret
,
A. E.
,
De Focatiis
,
D. S.
, and
Mazza
,
E.
,
2015
, “
Time-Dependent Mechanical Behavior of Human Amnion: Macroscopic and Microscopic Characterization
,”
Acta Biomater.
,
11
, pp.
314
323
.
You do not currently have access to this content.