Cells have evolved into complex sensory machines that communicate with their microenvironment via mechanochemical signaling. Extracellular mechanical cues trigger complex biochemical pathways in the cell, which regulate various cellular processes. Integrin-mediated focal adhesions (FAs) are large multiprotein complexes, also known as the integrin adhesome, that link the extracellular matrix (ECM) to the actin cytoskeleton, and are part of powerful intracellular machinery orchestrating mechanotransduction pathways. As forces are transmitted across FAs, individual proteins undergo structural and functional changes that involve a conversion of chemical to mechanical energy. The local composition of early adhesions likely defines the regional stress levels and determines the type of newly recruited proteins, which in turn modify the local stress distribution. Various approaches have been used for detecting and exploring molecular mechanisms through which FAs are spatiotemporally regulated, however, many aspects are yet to be understood. Current knowledge on the molecular mechanisms of mechanosensitivity in adhesion proteins is discussed herein along with important questions yet to be addressed, are discussed.

References

References
1.
Mofrad
,
M. R. K.
, and
Kamm
,
R. D.
, eds.,
2014
,
Cellular Mechanotransduction: Diverse Perspectives From Molecules to Tissues
,
Cambridge University Press
,
New York
.
2.
Hoffman
,
B. D.
,
Grashoff
,
C.
, and
Schwartz
,
M. A.
,
2011
, “
Dynamic Molecular Processes Mediate Cellular Mechanotransduction
,”
Nature
,
475
(
7356
), pp.
316
323
.
3.
Ingber
,
D. E.
,
2003
, “
Mechanosensation Through Integrins: Cells Act Locally But Think Globally
,”
Proc. Natl. Acad. Sci. U. S. A.
,
100
(
4
), pp.
1472
1474
.
4.
Katta
,
S.
,
Krieg
,
M.
, and
Goodman
,
M. B.
,
2015
, “
Feeling Force: Physical and Physiological Principles Enabling Sensory Mechanotransduction
,”
Annu. Rev. Cell Dev. Biol.
,
31
(
1
), pp.
347
371
.
5.
Goldmann
,
W. H.
, and
Isenberg
,
G.
,
1991
, “
Kinetic Determination of Talin-Actin
,”
Biochem. Biophys. Res. Commun.
,
178
(
2
), pp.
718
723
.
6.
Watson
,
P. A.
,
1991
, “
Function Follows Form: Generation of Intracellular Signals by Cell Deformation
,”
FASEB J.
,
5
(
7
), pp.
2013
2019
.http://www.fasebj.org/content/5/7/2013.long
7.
Hu
,
X.
,
Jing
,
C.
,
Xu
,
X.
,
Nakazawa
,
N.
,
Cornish
,
V. W.
,
Margadant
,
F. M.
, and
Sheetz
,
M. P.
,
2016
, “
Cooperative Vinculin Binding to Talin Mapped by Time-Resolved Super Resolution Microscopy
,”
Nano Lett.
,
16
(
7
), pp.
4062
4068
.
8.
Ehrlicher
,
A. J.
,
Nakamura
,
F.
,
Hartwig
,
J. H.
,
Weitz
,
D. A.
, and
Stossel
,
T. P.
,
2011
, “
Mechanical Strain in Actin Networks Regulates FilGAP and Integrin Binding to Filamin A
,”
Nature
,
478
(
7368
), pp.
260
263
.
9.
Yao
,
M.
,
Qiu
,
W.
,
Liu
,
R.
,
Efremov
,
A. K.
,
Cong
,
P.
,
Seddiki
,
R.
,
Payre
,
M.
,
Lim
,
C. T.
,
Ladoux
,
B.
,
Mège
,
R.-M.
, and
Yan
,
J.
,
2014
, “
Force-Dependent Conformational Switch of α-Catenin Controls Vinculin Binding
,”
Nat. Commun.
,
5
(
4525
), pp.
1
11
.
10.
Roskoski
,
R.
,
2012
, “
ERK1/2 MAP Kinases: Structure, Function, and Regulation
,”
Pharmacol. Res.
,
66
(
2
), pp.
105
143
.
11.
Garakani
,
K.
,
Shams
,
H.
, and
Mofrad
,
M. R. K.
,
2017
, “
Mechanosensitive Conformation of Vinculin Regulates Its Binding to MAPK1
,”
Biophys. J.
,
112
(9), pp.
1885
1893
.
12.
Kong
,
F.
,
Li
,
Z.
,
Parks
,
W. M.
,
Dumbauld
,
D. W.
,
García
,
A. J.
,
Mould
,
A. P.
,
Humphries
,
M. J.
, and
Zhu
,
C.
,
2013
, “
Cyclic Mechanical Reinforcement of Integrin-Ligand Interactions
,”
Mol. Cell.
,
49
(
6
), pp.
1060
1068
.
13.
Guo
,
B.
, and
Guilford
,
W. H.
,
2006
, “
Mechanics of Actomyosin Bonds in Different Nucleotide States Are Tuned to Muscle Contraction
,”
Proc. Natl. Acad. Sci.
,
103
(
26
), pp.
9844
9849
.
14.
Buckley
,
C. D.
,
Tan
,
J.
,
Anderson
,
K. L.
,
Hanein
,
D.
,
Volkmann
,
N.
,
Weis
,
W. I.
,
Nelson
,
W. J.
, and
Dunn
,
A. R.
,
2014
, “
The Minimal Cadherin-Catenin Complex Binds to Actin Filaments Under Force
,”
Science
,
346
(
6209
), pp. 1254211–1254218.
15.
Huang
,
D. L.
,
Bax
,
N. A.
,
Buckley
,
C. D.
,
Weis
,
W. I.
, and
Dunn
,
A. R.
,
2017
, “
Vinculin Forms a Directionally Asymmetric Catch Bond With F-Actin
,”
Science
,
357
(
6352
), pp.
703
706
.
16.
Schwarz
,
U. S.
, and
Gardel
,
M. L.
,
2012
, “
United We Stand—Integrating the Actin Cytoskeleton and Cell-Matrix Adhesions in Cellular Mechanotransduction
,”
J. Cell Sci.
,
125
(
13
), pp.
3051
3060
.
17.
Na
,
S.
,
Collin
,
O.
,
Chowdhury
,
F.
,
Tay
,
B.
,
Ouyang
,
M.
,
Wang
,
Y.
, and
Wang
,
N.
,
2008
, “
Rapid Signal Transduction in Living Cells Is a Unique Feature of Mechanotransduction
,”
Proc. Natl. Acad. Sci.
,
105
(
18
), pp.
6626
6631
.
18.
Barry
,
A. K.
,
Wang
,
N.
, and
Leckband
,
D. E.
,
2015
, “
Local VE-Cadherin Mechanotransduction Triggers Long-Ranged Remodeling of Endothelial Monolayers
,”
J. Cell Sci.
,
128
(
7
), pp.
1341
1351
.
19.
Ingber
,
D. E.
,
2006
, “
Cellular Mechanotransduction: Putting All the Pieces Together Again
,”
FASEB J.
,
20
(7), pp.
811
827
.
20.
Winograd-Katz
,
S. E.
,
Fässler
,
R.
,
Geiger
,
B.
, and
Legate
,
K. R.
,
2014
, “
The Integrin Adhesome: From Genes and Proteins to Human Disease
,”
Nat. Rev. Mol. Cell Biol.
,
15
(
4
), pp.
273
288
.
21.
Mofrad
,
M. R. K.
,
2009
, “
Rheology of the Cytoskeleton
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
433
453
.
22.
Lele
,
T. P.
,
Thodeti
,
C. K.
,
Pendse
,
J.
, and
Ingber
,
D. E.
,
2008
, “
Investigating Complexity of Protein-Protein Interactions in Focal Adhesions
,”
Biochem. Biophys. Res. Commun.
,
369
(
3
), pp.
929
934
.
23.
Jahed
,
Z.
,
Shams
,
H.
,
Mehrbod
,
M.
, and
Mofrad
,
M. R. K.
,
2014
, “
Mechanotransduction Pathways Linking the Extracellular Matrix to the Nucleus
,”
Int. Rev. Cell Mol. Biol.
,
310
, pp.
171
220
.
24.
Case
,
L. B.
, and
Waterman
,
C. M.
,
2015
, “
Integration of Actin Dynamics and Cell Adhesion by a Three-Dimensional, Mechanosensitive Molecular Clutch
,”
Nat. Cell Biol.
,
17
(
8
), pp.
955
963
.
25.
Galbraith
,
C. G.
,
Yamada
,
K. M.
, and
Sheetz
,
M. P.
,
2002
, “
The Relationship Between Force and Focal Complex Development
,”
J. Cell Biol.
,
159
(
4
), pp.
695
705
.
26.
Burridge
,
K.
,
Fath
,
K.
,
Kelly
,
T.
,
Nuckolls
,
G.
, and
Turner
,
C.
,
1988
, “
Focal Adhesions: Transmembrane Junctions Between the Extracellular Matrix and the Cytoskeleton
,”
Annu. Rev. Cell Biol.
,
4
, pp.
487
525
.
27.
Kanchanawong
,
P.
,
Shtengel
,
G.
,
Pasapera
,
A. M.
,
Ramko
,
E. B.
,
Davidson
,
M. W.
,
Hess
,
H. F.
, and
Waterman
,
C. M.
,
2010
, “
Nanoscale Architecture of Integrin-Based Cell Adhesions
,”
Nature
,
468
(
7323
), pp.
580
584
.
28.
Case
,
L. B.
,
Baird
,
M. A.
,
Shtengel
,
G.
,
Campbell
,
S. L.
,
Hess
,
H. F.
,
Davidson
,
M. W.
, and
Waterman
,
C. M.
,
2015
, “
Molecular Mechanism of Vinculin Activation and Nanoscale Spatial Organization in Focal Adhesions
,”
Nat. Cell Biol.
,
17
(
7
), pp.
880
892
.
29.
Beningo
,
K. A.
,
Dembo
,
M.
,
Kaverina
,
I.
,
Small
,
J. V.
, and
Wang
,
Y. L.
,
2001
, “
Nascent Focal Adhesions Are Responsible for the Generation of Strong Propulsive Forces in Migrating Fibroblasts
,”
J. Cell Biol.
,
153
(
4
), pp.
881
887
.
30.
Roca-Cusachs
,
P.
,
del Rio
,
A.
,
Puklin-Faucher
,
E.
,
Gauthier
,
N. C.
,
Biais
,
N.
, and
Sheetz
,
M. P.
,
2013
, “
Integrin-Dependent Force Transmission to the Extracellular Matrix by α-Actinin Triggers Adhesion Maturation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
15
), pp.
E1361
E1370
.
31.
Ciobanasu
,
C.
,
Faivre
,
B.
, and
Le Clainche
,
C.
,
2014
, “
Reconstituting Actomyosin-Dependent Mechanosensitive Protein Complexes In Vivo
,”
Nat. Protoc.
,
10
(
1
), pp.
75
89
.
32.
Alenghat
,
F. J.
, and
Ingber
,
D. E.
,
2002
, “
Mechanotransduction: All Signals Point to Cytoskeleton, Matrix, and Integrins
,”
Sci. STKE
,
2002
(
119
), pp.
1
4
.
33.
Kolahi
,
K. S.
, and
Mofrad
,
M. R. K.
,
2010
, “
Mechanotransduction: A Major Regulator of Homeostasis and Development
,”
Wiley Interdiscip. Rev. Syst. Biol. Med.
,
2
(
6
), pp.
625
639
.
34.
Barbee
,
K. A.
,
Mundel
,
T.
,
Lal
,
R.
, and
Davies
,
P. F.
,
1995
, “
Subcellular Distribution of Shear Stress at the Surface of Flow-Aligned and Nonaligned Endothelial Monolayers
,”
Am. J. Physiol.
,
268
(4), pp.
H1765
H1772
.
35.
Lehoux
,
S.
, and
Tedgui
,
A.
,
2003
, “
Cellular Mechanics and Gene Expression in Blood Vessels
,”
J. Biomech.
,
36
(
5
), pp.
631
643
.
36.
Humphrey
,
J. D.
,
Dufresne
,
E. R.
, and
Schwartz
,
M. A.
,
2014
, “
Mechanotransduction and Extracellular Matrix Homeostasis
,”
Nat. Rev. Mol. Cell Biol.
,
15
(
12
), pp.
802
812
.
37.
Fouchard
,
J.
,
Bimbard
,
C.
,
Bufi
,
N.
,
Durand-Smet
,
P.
,
Proag
,
A.
,
Richert
,
A.
,
Cardoso
,
O.
, and
Asnacios
,
A.
,
2014
, “
Three-Dimensional Cell Body Shape Dictates the Onset of Traction Force Generation and Growth of Focal Adhesions
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
36
), pp.
13075
13080
.
38.
Martiel
,
J. L.
,
Leal
,
A.
,
Kurzawa
,
L.
,
Balland
,
M.
,
Wang
,
I.
,
Vignaud
,
T.
,
Tseng
,
Q.
, and
Théry
,
M.
,
2015
, “
Measurement of Cell Traction Forces With ImageJ
,”
Methods Cell Biol.
,
125
, pp.
269
287
.
39.
Gardel
,
M. L.
,
Sabass
,
B.
,
Ji
,
L.
,
Danuser
,
G.
,
Schwarz
,
U. S.
, and
Waterman
,
C. M.
,
2008
, “
Traction Stress in Focal Adhesions Correlates Biphasically With Actin Retrograde Flow Speed
,”
J. Cell Biol.
,
183
(
6
), pp.
999
1005
.
40.
Plotnikov
,
S. V.
,
Pasapera
,
A. M.
,
Sabass
,
B.
, and
Waterman
,
C. M.
,
2012
, “
Force Fluctuations Within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration
,”
Cell
,
151
(
7
), pp.
1513
1527
.
41.
Wang
,
Y.-L.
,
2007
, “
Flux at Focal Adhesions: Slippage Clutch, Mechanical Gauge, or Signal Depot
,”
Sci. STKE
,
2007
(
377
), pp. 1–3.
42.
Pollard
,
T. D.
, and
Cooper
,
J. A.
,
2009
, “
Actin, a Central Player in Cell Shape and Movement
,”
Science
,
326
(
5957
), pp.
1208
1212
.
43.
Trichet
,
L.
,
Le Digabel
,
J.
,
Hawkins
,
R. J.
,
Vedula
,
S. R. K.
,
Gupta
,
M.
,
Ribrault
,
C.
,
Hersen
,
P.
,
Voituriez
,
R.
, and
Ladoux
,
B.
,
2012
, “
Evidence of a Large-Scale Mechanosensing Mechanism for Cellular Adaptation to Substrate Stiffness
,”
Proc. Natl. Acad. Sci.
,
109
(
18
), pp.
6933
6938
.
44.
Ponti
,
A.
,
Machacek
,
M.
,
Gupton
,
S. L.
,
Waterman-Storer
,
C. M.
, and
Danuser
,
G.
,
2004
, “
Two Distinct Actin Networks Drive the Protrusion Migrating Cells
,”
Science
,
305
(5691), pp.
1782
1786
.
45.
Hu
,
K.
,
Ji
,
L.
,
Applegate
,
K. T.
,
Danuser
,
G.
, and
Waterman-Storer
,
C. M.
,
2007
, “
Differential Transmission of Actin Motion Within Focal Adhesions
,”
Science
,
315
(
80
), pp.
111
115
.
46.
Geiger
,
B.
,
Spatz
,
J. P.
, and
Bershadsky
,
A. D.
,
2009
, “
Environmental Sensing Through Focal Adhesions
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
21
33
.
47.
Oakes
,
P. W.
, and
Gardel
,
M. L.
,
2014
, “
Stressing the Limits of Focal Adhesion Mechanosensitivity
,”
Curr. Opin. Cell Biol.
,
30
(
1
), pp.
68
73
.
48.
Choi
,
C. K.
,
Vicente-Manzanares
,
M.
,
Zareno
,
J.
,
Whitmore
,
L. A.
,
Mogilner
,
A.
, and
Horwitz
,
A. R.
,
2008
, “
Actin and Alpha-Actinin Orchestrate the Assembly and Maturation of Nascent Adhesions in a Myosin II Motor-Independent Manner
,”
Nat. Cell Biol.
,
10
(
9
), pp.
1039
1050
.
49.
Oakes
,
P. W.
,
Beckham
,
Y.
,
Stricker
,
J.
, and
Gardel
,
M. L.
,
2012
, “
Tension Is Required But Not Sufficient for Focal Adhesion Maturation Without a Stress Fiber Template
,”
J. Cell Biol.
,
196
(
3
), pp.
363
374
.
50.
Tojkander
,
S.
,
Gateva
,
G.
, and
Lappalainen
,
P.
,
2012
, “
Actin Stress Fibers–Assembly, Dynamics and Biological Roles
,”
J. Cell Sci.
,
125
(
8
), pp.
1855
1864
.
51.
Pellegrin
,
S.
, and
Mellor
,
H.
,
2007
, “
Actin Stress Fibres
,”
J. Cell Sci.
,
120
(
20
), pp.
3491
3499
.
52.
Kirchenbüchler
,
D.
,
Born
,
S.
,
Kirchgessner
,
N.
,
Houben
,
S.
,
Hoffmann
,
B.
, and
Merkel
,
R.
,
2010
, “
Substrate, Focal Adhesions, and Actin Filaments: A Mechanical Unit With a Weak Spot for Mechanosensitive Proteins
,”
J. Phys. Condens. Matter
,
22
(
19
), pp. 194109–194119.
53.
Kuo
,
J.-C.
,
Han
,
X.
,
Hsiao
,
C.-T.
,
Yates
,
J. R.
, and
Waterman
,
C. M.
,
2011
, “
Analysis of the Myosin-II-Responsive Focal Adhesion Proteome Reveals a Role for β-Pix in Negative Regulation of Focal Adhesion Maturation
,”
Nat. Cell Biol.
,
13
(
4
), pp.
383
393
.
54.
Grashoff
,
C.
,
Hoffman
,
B. D.
,
Brenner
,
M. D.
,
Zhou
,
R.
,
Parsons
,
M.
,
Yang
,
M. T.
,
McLean
,
M. A.
,
Sligar
,
S. G.
,
Chen
,
C. S.
,
Ha
,
T.
, and
Schwartz
,
M. A.
,
2010
, “
Measuring Mechanical Tension Across Vinculin Reveals Regulation of Focal Adhesion Dynamics
,”
Nature
,
466
(
7303
), pp.
263
266
.
55.
Kumar
,
A.
,
Ouyang
,
M.
,
Van den Dries
,
K.
,
McGhee
,
E. J.
,
Tanaka
,
K.
,
Anderson
,
M. D.
,
Groisman
,
A.
,
Goult
,
B. T.
,
Anderson
,
K. I.
, and
Schwartz
,
M. A.
,
2016
, “
Talin Tension Sensor Reveals Novel Features of Focal Adhesion Force Transmission and Mechanosensitivity
,”
J. Cell Biol.
,
213
(
3
), pp.
371
383
.
56.
Dill
,
K. A.
, and
Bromberg
,
S.
,
2010
,
Molecular Driving Forces, Garland Science
,
Taylor & Francis
,
London
.
57.
von Wichert
,
G.
,
Haimovich
,
B.
,
Feng
,
G.-S.
, and
Sheetz
,
M. P.
,
2003
, “
Force-Dependent Integrin-Cytoskeleton Linkage Formation Requires Downregulation of Focal Complex Dynamics by Shp2
,”
EMBO J.
,
22
(
19
), pp.
5023
5035
.
58.
Wolfenson
,
H.
,
Lavelin
,
I.
, and
Geiger
,
B.
,
2013
, “
Dynamic Regulation of the Structure and Functions of Integrin Adhesions
,”
Dev. Cell.
,
24
(
5
), pp.
447
458
.
59.
Wolfenson
,
H.
,
Henis
,
Y. I.
,
Geiger
,
B.
, and
Bershadsky
,
A. D.
,
2009
, “
The Heel and Toe of the Cell's Foot: A Multifaceted Approach for Understanding the Structure and Dynamics of Focal Adhesions
,”
Cell Motil. Cytoskeleton
,
66
(
11
), pp.
1017
1029
.
60.
Shams
,
H.
,
Golji
,
J.
,
Garakani
,
K.
, and
Mofrad
,
M. R. K.
,
2016
, “
Dynamic Regulation of α-Actinin's Calponin Homology Domains on F-Actin
,”
Biophys. J.
,
110
(
6
), pp.
1444
1455
.
61.
Shams
,
H.
,
Golji
,
J.
, and
Mofrad
,
M. R. K.
,
2012
, “
A Molecular Trajectory of α -Actinin Activation
,”
Biophys. J.
,
103
(
10
), pp.
2050
2059
.
62.
Schiller
,
H. B.
, and
Fässler
,
R.
,
2013
, “
Mechanosensitivity and Compositional Dynamics of Cell–Matrix Adhesions
,”
EMBO Rep.
,
14
(
6
), pp.
509
519
.
63.
Golji, J.
, and
Mofrad, M. R. K.
, 2014, “
The Talin Dimer Structure Orientation Is Mechanically Regulated
,”
Biophys. J.
,
107
(8), pp. 1802–1809.https://www.ncbi.nlm.nih.gov/pubmed/25418161
64.
Yao
,
M.
,
Goult
,
B. T.
,
Chen
,
H.
,
Cong
,
P.
,
Sheetz
,
M. P.
, and
Yan
,
J.
,
2014
, “
Mechanical Activation of Vinculin Binding to Talin Locks Talin in an Unfolded Conformation
,”
Sci. Rep.
,
4
(
4610
), pp.
1
7
.
65.
Wei
,
G.
,
Xi
,
W.
,
Nussinov
,
R.
, and
Ma
,
B.
,
2016
, “
Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell
,”
Chem. Rev.
,
116
(
11
), pp.
6516
6551
.
66.
Chen
,
H.
,
Cohen
,
D. M.
,
Choudhury
,
D. M.
,
Kioka
,
N.
, and
Craig
,
S. W.
,
2005
, “
Spatial Distribution and Functional Significance of Activated Vinculin in Living Cells
,”
J. Cell Biol.
,
169
(
3
), pp.
459
470
.
67.
Cost
,
A.-L.
,
Ringer
,
P.
,
Chrostek-Grashoff
,
A.
, and
Grashoff
,
C.
,
2015
, “
How to Measure Molecular Forces in Cells: A Guide to Evaluating Genetically-Encoded FRET-Based Tension Sensors
,”
Cell. Mol. Bioeng.
,
8
(
1
), pp.
96
105
.
68.
Erdmann
,
T.
, and
Schwarz
,
U. S.
,
2006
, “
Bistability of Cell-Matrix Adhesions Resulting From Nonlinear Receptor-Ligand Dynamics
,”
Biophys. J.
,
91
(
6
), pp.
L60
L62
.
69.
Li
,
Y.
,
Bhimalapuram
,
P.
, and
Dinner
,
A. R.
,
2010
, “
Model for How Retrograde Actin Flow Regulates Adhesion Traction Stresses
,”
J. Phys. Condens. Matter
,
22
(
19
), pp. 1–11.
70.
Goksoy
,
E.
,
Ma
,
Y.-Q.
,
Wang
,
X.
,
Kong
,
X.
,
Perera
,
D.
,
Plow
,
E. F.
, and
Qin
,
J.
,
2008
, “
Structural Basis for the Autoinhibition of Talin in Regulating Integrin Activation
,”
Mol. Cell.
,
31
(
1
), pp.
124
133
.
71.
Song
,
X.
,
Yang
,
J.
,
Hirbawi
,
J.
,
Ye
,
S.
,
Perera
,
H. D.
,
Goksoy
,
E.
,
Dwivedi
,
P.
,
Plow
,
E. F.
,
Zhang
,
R.
, and
Qin
,
J.
,
2012
, “
A Novel Membrane-Dependent On/Off Switch Mechanism of Talin FERM Domain at Sites of Cell Adhesion
,”
Cell Res.
,
22
(
11
), pp.
1533
1545
.
72.
Gayrard
,
C.
, and
Borghi
,
N.
,
2015
, “
FRET-Based Molecular Tension Microscopy
,”
Methods
,
94
(2016), pp.
33
42
.
73.
LaCroix
,
A. S.
,
Rothenberg
,
K. E.
,
Berginski
,
M. E.
,
Urs
,
A. N.
, and
Hoffman
,
B. D.
,
2015
, “
Construction, Imaging, and Analysis of FRET-Based Tension Sensors in Living Cells
,”
Methods Cell Biol.
,
125
, pp.
161
186
.
74.
Nordenfelt
,
P.
,
Elliott
,
H. L.
, and
Springer
,
T. A.
,
2016
, “
Coordinated Integrin Activation by Actin-Dependent Force During T-Cell Migration
,”
Nat. Commun.
,
7
(13119), pp.
1
15
.
75.
Meng
,
F.
,
Suchyna
,
T. M.
,
Lazakovitch
,
E.
,
Gronostajski
,
R. M.
, and
Sachs
,
F.
,
2011
, “
Real Time FRET Based Detection of Mechanical Stress in Cytoskeletal and Extracellular Matrix Proteins
,”
Cell. Mol. Bioeng.
,
4
(
2
), pp.
148
159
.
76.
Ringer
,
P.
,
Weißl
,
A.
,
Cost
,
A.-L.
,
Freikamp
,
A.
,
Sabass
,
B.
,
Mehlich
,
A.
,
Tramier
,
M.
,
Rief
,
M.
, and
Grashoff
,
C.
,
2017
, “
Multiplexing Molecular Tension Sensors Reveals Piconewton Force Gradient Across Talin-1
,”
Nat. Methods
,
14
(11), pp.
1090
1096
.
77.
Golji
,
J.
,
Lam
,
J.
, and
Mofrad
,
M. R. K.
,
2011
, “
Vinculin Activation Is Necessary for Complete Talin Binding
,”
Biophys. J.
,
100
(
2
), pp.
332
340
.
78.
Lee
,
S. E.
,
Kamm
,
R. D.
, and
Mofrad
,
M. R. K.
,
2007
, “
Force-Induced Activation of Talin and Its Possible Role in Focal Adhesion Mechanotransduction
,”
J. Biomech.
,
40
(
9
), pp.
2096
2106
.
79.
Rothenberg
,
K. E.
,
Neibart
,
S. S.
,
LaCroix
,
A. S.
, and
Hoffman
,
B. D.
,
2015
, “
Controlling Cell Geometry Affects the Spatial Distribution of Load Across Vinculin
,”
Cell. Mol. Bioeng.
,
8
(
3
), pp.
364
382
.
80.
Tseng
,
Q.
,
Duchemin-Pelletier
,
E.
,
Deshiere
,
A.
,
Balland
,
M.
,
Guillou
,
H.
,
Filhol
,
O.
, and
Thery
,
M.
,
2012
, “
Spatial Organization of the Extracellular Matrix Regulates Cell-Cell Junction Positioning
,”
Proc. Natl. Acad. Sci.
,
109
(
5
), pp.
1506
1511
.
81.
Liu
,
Z.
,
Tan
,
J. L.
,
Cohen
,
D. M.
,
Yang
,
M. T.
,
Sniadecki
,
N. J.
,
Alom Ruiz
,
S.
,
Nelson
,
C. M.
, and
Chen
,
C. S.
,
2010
, “
Mechanical Tugging Force Regulates the Size of Cell-Cell Junctions
,”
Proc. Natl. Acad. Sci.
,
107
(
22
), pp.
9944
9949
.
82.
Gottardi
,
C. J.
, and
Gumbiner
,
B. M.
,
2001
, “
Adhesion Signaling: How Beta-Catenin Interacts With Its Partners
,”
Curr. Biol.
,
11
(
19
), pp.
792
794
.
83.
Kim
,
C.
,
Ye
,
F.
,
Hu
,
X.
, and
Ginsberg
,
M. H.
,
2012
, “
Talin Activates Integrins by Altering the Topology of the Beta Transmembrane Domain
,”
J. Cell Biol.
,
197
(
5
), pp.
605
611
.
84.
Kim
,
T. J.
,
Zheng
,
S.
,
Sun
,
J.
,
Muhamed
,
I.
,
Wu
,
J.
,
Lei
,
L.
,
Kong
,
X.
,
Leckband
,
D. E.
, and
Wang
,
Y.
,
2015
, “
Dynamic Visualization of α-Catenin Reveals Rapid, Reversible Conformation Switching Between Tension States
,”
Curr. Biol.
,
25
(
2
), pp.
218
224
.
85.
Kong
,
F.
,
García
,
A. J.
,
Mould
,
A. P.
,
Humphries
,
M. J.
, and
Zhu
,
C.
,
2009
, “
Demonstration of Catch Bonds Between an Integrin and Its Ligand
,”
J. Cell Biol.
,
185
(
7
), pp.
1275
1284
.
86.
Jiang
,
G.
,
Giannone
,
G.
,
Critchley
,
D. R.
,
Fukumoto
,
E.
, and
Sheetz
,
M. P.
,
2003
, “
Two-Piconewton Slip Bond Between Fibronectin and the Cytoskeleton Depends on Talin
,”
Nature
,
424
(
6946
), pp.
334
337
.
87.
Wehrle-Haller
,
B.
,
2012
, “
Structure and Function of Focal Adhesions
,”
Curr. Opin. Cell Biol.
,
24
(1), pp.
116
124
.
88.
Yang
,
C.
,
Zhang
,
X.
,
Guo
,
Y.
,
Meng
,
F.
,
Sachs
,
F.
, and
Guo
,
J.
,
2015
, “
Mechanical Dynamics in Live Cells and Fluorescence-Based Force/Tension Sensors
,”
Biochim. Biophys. Acta, Mol. Cell Res.
,
1853
(
8
), pp.
1889
1904
.
89.
Shams
,
H.
,
Soheilypour
,
M.
,
Peyro
,
M.
,
Moussavi-Baygi
,
R.
, and
Mofrad
,
M. R. K.
,
2017
, “
Looking ‘Under the Hood’ of Cellular Mechanotransduction With Multiscale Computational Tools: A Systems Biomechanics Approach
,”
ACS Biomater. Sci. Eng.
,
3
(
11
), pp.
2712
2726
.
90.
Kolahi
,
K. S.
, and
Mofrad
,
M. R. K.
,
2008
, “
Molecular Mechanics of Filamin's Rod Domain
,”
Biophys. J.
,
94
(
3
), pp.
1075
1083
.
91.
Shams
,
H.
, and
Mofrad
,
M. R. K.
,
2017
, “
Interaction With α-Actinin Induces a Structural Kink in the Transmembrane Domain of β3-Integrin and Impairs Signal Transduction
,”
Biophys. J.
,
113
(
4
), pp.
948
956
.
You do not currently have access to this content.