Development of a closed circulatory system requires that large arteries adapt to the mechanical demands of high, pulsatile pressure. Elastin and collagen uniquely address these design criteria in the low and high stress regimes, resulting in a nonlinear mechanical response. Elastin is the core component of elastic fibers, which provide the artery wall with energy storage and recoil. The integrity of the elastic fiber network is affected by component insufficiency or disorganization, leading to an array of vascular pathologies and compromised mechanical behavior. In this review, we discuss how elastic fibers are formed and how they adapt in development and disease. We discuss elastic fiber contributions to arterial mechanical behavior and remodeling. We primarily present data from mouse models with elastic fiber deficiencies, but suggest that alternate small animal models may have unique experimental advantages and the potential to provide new insights. Advanced ultrastructural and biomechanical data are constantly being used to update computational models of arterial mechanics. We discuss the progression from early phenomenological models to microstructurally motivated strain energy functions for both collagen and elastic fiber networks. Although many current models individually account for arterial adaptation, complex geometries, and fluid–solid interactions (FSIs), future models will need to include an even greater number of factors and interactions in the complex system. Among these factors, we identify the need to revisit the role of time dependence and axial growth and remodeling in large artery mechanics, especially in cardiovascular diseases that affect the mechanical integrity of the elastic fibers.

References

References
1.
Yurchenco
,
P. D.
, and
O'Rear
,
J. J.
,
1994
, “
Basal Lamina Assembly
,”
Curr. Opin. Cell Biol.
,
6
(
5
), pp.
674
681
.
2.
Han
,
S.
,
Shin
,
Y.
,
Jeong
,
H. E.
,
Jeon
,
J. S.
,
Kamm
,
R. D.
,
Huh
,
D.
,
Sohn
,
L. L.
, and
Chung
,
S.
,
2015
, “
Constructive Remodeling of a Synthetic Endothelial Extracellular Matrix
,”
Sci. Rep.
,
5
, p.
18290
.
3.
Schwartz
,
S. M.
, and
Benditt
,
E. P.
,
1972
, “
Studies on Aortic Intima—I: Structure and Permeability of Rat Thoracic Aortic Intima
,”
Am. J. Pathol.
,
66
(
2
), pp.
241
264
.https://www.ncbi.nlm.nih.gov/pubmed/5009972
4.
Gerrity
,
R. G.
,
Richardson
,
M.
,
Somer
,
J. B.
,
Bell
,
F. P.
, and
Schwartz
,
C. J.
,
1977
, “
Endothelial Cell Morphology in Areas of In Vivo Evans Blue Uptake in the Aorta of Young Pigs—II: Ultrastructure of the Intima in Areas of Differing Permeability to Proteins
,”
Am. J. Pathol.
,
89
(
2
), pp.
313
334
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2032231/
5.
Levesque
,
M. J.
, and
Nerem
,
R. M.
,
1985
, “
The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress
,”
ASME J. Biomech. Eng.
,
107
(
4
), pp.
341
347
.
6.
Yoshizumi
,
M.
,
Kurihara
,
H.
,
Sugiyama
,
T.
,
Takaku
,
F.
,
Yanagisawa
,
M.
,
Masaki
,
T.
, and
Yazaki
,
Y.
,
1989
, “
Hemodynamic Shear Stress Stimulates Endothelin Production by Cultured Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
,
161
(
2
), pp.
859
864
.
7.
Buga
,
G. M.
,
Gold
,
M. E.
,
Fukuto
,
J. M.
, and
Ignarro
,
L. J.
, “
Shear Stress-Induced Release of Nitric Oxide From Endothelial Cells Grown on Beads
,”
Hypertension
,
17
(
2
), pp.
187
193
.
8.
De Mey
,
J. G.
, and
Vanhoutte
,
P. M.
,
1981
, “
Role of the Intima in Cholinergic and Purinergic Relaxation of Isolated Canine Femoral Arteries
,”
J. Physiol.
,
316
(1), pp.
347
355
.
9.
Pober
,
J. S.
, and
Cotran
,
R. S.
,
1990
, “
The Role of Endothelial Cells in Inflammation
,”
Transplantation
,
50
(
4
), pp.
537
544
.
10.
Leung
,
D. W.
,
Cachianes
,
G.
,
Kuang
,
W.-J.
,
Goeddel
,
D. V.
, and
Ferrara
,
N.
,
1989
, “
Vascular Endothelial Growth Factor Is a Secreted Angiogenic Mitogen
,”
Science
,
246
(
4935
), pp.
1306
1309
.
11.
Qiu
,
H.
,
Zhu
,
Y.
,
Sun
,
Z.
,
Trzeciakowski
,
J. P.
,
Gansner
,
M.
,
Depre
,
C.
,
Resuello
,
R. R.
,
Natividad
,
F. F.
,
Hunter
,
W. C.
,
Genin
,
G. M.
,
Elson
,
E. L.
,
Vatner
,
D. E.
,
Meininger
,
G. A.
, and
Vatner
,
S. F.
,
2010
, “
Short Communication: Vascular Smooth Muscle Cell Stiffness as a Mechanism for Increased Aortic Stiffness With Aging
,”
Circ. Res.
,
107
(
5
), pp.
615
619
.
12.
Espinosa
,
M. G.
,
Gardner
,
W. S.
,
Bennett
,
L.
,
Sather
,
B. A.
,
Yanagisawa
,
H.
, and
Wagenseil
,
J. E.
,
2014
, “
The Effects of Elastic Fiber Protein Insufficiency and Treatment on the Modulus of Arterial Smooth Muscle Cells
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021030
.
13.
Rensen
,
S. S. M.
,
Doevendans
,
P. A. F. M.
, and
van Eys
,
G. J. J. M.
,
2007
, “
Regulation and Characteristics of Vascular Smooth Muscle Cell Phenotypic Diversity
,”
Netherlands Heart J.
,
15
(
3
), pp.
100
108
.
14.
Clark
,
J. M.
, and
Glagov
,
S.
,
1985
, “
Transmural Organization of the Arterial Media the Lamellar Unit Revisited
,”
Arterioscler. Thromb. Vasc. Biol.
,
5
(
1
), pp.
19
34
.
15.
Shadwick
,
R. E.
,
1999
, “
Mechanical Design in Arteries
,”
J. Exp. Biol.
,
202
(
23
), pp.
3305
3313
.http://jeb.biologists.org/content/202/23/3305
16.
Stenmark
,
K. R.
,
Yeager
,
M. E.
,
El Kasmi
,
K. C.
,
Nozik-Grayck
,
E.
,
Gerasimovskaya
,
E. V.
,
Li
,
M.
,
Riddle
,
S. R.
, and
Frid
,
M. G.
,
2013
, “
The Adventitia: Essential Regulator of Vascular Wall Structure and Function
,”
Annu. Rev. Physiol.
,
75
(
1
), pp.
23
47
.
17.
Herrmann
,
J.
,
Samee
,
S.
,
Chade
,
A.
,
Porcel
,
M. R.
,
Lerman
,
L. O.
, and
Lerman
,
A.
,
2005
, “
Differential Effect of Experimental Hypertension and Hypercholesterolemia on Adventitial Remodeling
,”
Arterioscler. Thromb. Vasc. Biol.
,
25
(
2
), pp.
447
453
.
18.
Tozzi
,
C. A.
,
Christiansen
,
D. L.
,
Poiani
,
G. J.
, and
Riley
,
D. J.
, 1994, “
Excess Collagen in Hypertensive Pulmonary Arteries Decreases Vascular Distensibility
,”
Am. J. Respir. Crit. Care Med.
,
149
(5), pp. 1317–1326.
19.
Schulze-Bauer
,
C. A. J.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2002
, “
Mechanics of the Human Femoral Adventitia Including the High-Pressure Response
,”
Am. J. Physiol.—Heart Circ. Physiol.
,
282
(
6
), pp.
H2427
H2440
.
20.
Rezakhaniha
,
R.
,
Agianniotis
,
A.
,
Schrauwen
,
J. T. C.
,
Griffa
,
A.
,
Sage
,
D.
,
Bouten
,
C. V. C.
,
van de Vosse
,
F. N.
,
Unser
,
M.
, and
Stergiopulos
,
N.
,
2012
, “
Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
461
473
.
21.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast. Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
22.
Carta
,
L.
,
Wagenseil
,
J. E.
,
Knutsen
,
R. H.
,
Mariko
,
B.
,
Faury
,
G.
,
Davis
,
E. C.
,
Starcher
,
B.
,
Mecham
,
R. P.
, and
Ramirez
,
F.
,
2009
, “
Discrete Contributions of Elastic Fiber Components to Arterial Development and Mechanical Compliance
,”
Arterioscler. Thromb. Vasc. Biol.
,
29
(
12
), pp.
2083
2089
.
23.
Sage
,
H.
, and
Gray
,
W. R.
,
1979
, “
Studies on the Evolution of Elastin–I. Phylogenetic Distribution
,”
Comp. Biochem. Physiol. B
,
64
(
4
), pp.
313
327
.
24.
Starcher
,
B. C.
,
1986
, “
Elastin and the Lung
,”
Thorax
,
41
(
8
), pp.
577
585
.
25.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2007
, “
New Insights Into Elastic Fiber Assembly
,”
Birth Defects Res. C Embryo Today
,
81
(
4
), pp.
229
240
.
26.
Cox
,
B. A.
,
Starcher
,
B. C.
, and
Urry
,
D. W.
,
1973
, “
Coacervation of Alpha-Elastin Results in Fiber Formation
,”
Biochim. Biophys. Acta
,
317
(
1
), pp.
209
213
.
27.
Horiguchi
,
M.
,
Inoue
,
T.
,
Ohbayashi
,
T.
,
Hirai
,
M.
,
Noda
,
K.
,
Marmorstein
,
L. Y.
,
Yabe
,
D.
,
Takagi
,
K.
,
Akama
,
T. O.
,
Kita
,
T.
,
Kimura
,
T.
, and
Nakamura
,
T.
,
2009
, “
Fibulin-4 Conducts Proper Elastogenesis Via Interaction With Cross-Linking Enzyme Lysyl Oxidase
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
45
), pp.
19029
19034
.
28.
Kagan
,
H. M.
, and
Li
,
W.
,
2003
, “
Lysyl Oxidase: Properties, Specificity, and Biological Roles Inside and Outside of the Cell
,”
J. Cell. Biochem.
,
88
(
4
), pp.
660
672
.
29.
Li
,
B.
, and
Daggett
,
V.
, 2002, “
Molecular Basis for the Extensibility of Elastin
,”
J. Muscle Res. Cell Motil.
,
23
(5–6), pp. 561–573.
30.
Kelleher
,
C. M.
,
McLean
,
S. E.
, and
Mecham
,
R. P.
,
2004
, “
Vascular Extracellular Matrix and Aortic Development
,”
Curr. Top. Dev. Biol.
,
62
, pp.
153
188
.
31.
Li
,
D. Y.
,
Toland
,
A. E.
,
Boak
,
B. B.
,
Atkinson
,
D. L.
,
Ensing
,
G. J.
,
Morris
,
C. A.
, and
Keating
,
M. T.
,
1997
, “
Elastin Point Mutations Cause an Obstructive Vascular Disease, Supravalvular Aortic Stenosis
,”
Hum. Mol. Genet.
,
6
(
7
), pp.
1021
1028
.
32.
Wagenseil
,
J. E.
,
Nerurkar
,
N. L.
,
Knutsen
,
R. H.
,
Okamoto
,
R. J.
,
Li
,
D. Y.
, and
Mecham
,
R. P.
,
2005
, “
Effects of Elastin Haploinsufficiency on the Mechanical Behavior of Mouse Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
3
), pp.
H1209
H1217
.
33.
Li
,
D. Y.
,
Brooke
,
B.
,
Davis
,
E. C.
,
Mecham
,
R. P.
,
Sorensen
,
L. K.
,
Boak
,
B. B.
,
Eichwald
,
E.
, and
Keating
,
M. T.
,
1998
, “
Elastin Is an Essential Determinant of Arterial Morphogenesis
,”
Nature
,
393
(
6682
), pp.
276
280
.
34.
Kim
,
J.
,
Staiculescu
,
M. C.
,
Cocciolone
,
A. J.
,
Yanagisawa
,
H.
,
Mecham
,
R. P.
, and
Wagenseil
,
J. E.
,
2017
, “
Crosslinked Elastic Fibers Are Necessary for Low Energy Loss in the Ascending Aorta
,”
J. Biomech.
,
61
, pp.
199
207
.
35.
Kielty
,
C. M.
,
Sherratt
,
M. J.
, and
Shuttleworth
,
C. A.
,
2002
, “
Elastic Fibres
,”
J. Cell Sci.
,
115
(
14
), pp.
2817
2828
.http://jcs.biologists.org/content/115/14/2817.article-info
36.
Handford
,
P. A.
,
Downing
,
A. K.
,
Reinhardt
,
D. P.
, and
Sakai
,
L. Y.
,
2000
, “
Fibrillin: From Domain Structure to Supramolecular Assembly
,”
Matrix Biol.
,
19
(
6
), pp.
457
470
.
37.
Reinhardt
,
D. P.
,
Keene
,
D. R.
,
Corson
,
G. M.
,
Pöschl
,
E.
,
Bächinger
,
H. P.
,
Gambee
,
J. E.
, and
Sakai
,
L. Y.
,
1996
, “
Fibrillin-1: Organization in Microfibrils and Structural Properties
,”
J. Mol. Biol.
,
258
(
1
), pp.
104
116
.
38.
Zhang
,
H.
,
Apfelroth
,
S. D.
,
Hu
,
W.
,
Davis
,
E. C.
,
Sanguineti
,
C.
,
Bonadio
,
J.
,
Mecham
,
R. P.
,
Ramirez
,
F.
,
Godfrey
,
M.
,
Vitale
,
E.
,
Hori
,
H.
,
Mattei
,
M. G.
,
Sarfarazi
,
M.
,
Tsipouras
,
P.
,
Ramirez
,
E.
, and
Hol
,
D. W.
,
1991
, “
Structure and Expression of Fibrillin-2, A Novel Microfibrillar Component Preferentially Located in Elastic Matrices
,”
J. Cell Biol.
,
124
(
5
), pp.
855
863
.
39.
Dietz
,
H.
, and
Pyeritz
,
R.
,
1995
, “
Mutations in the Human Gene for Fibrillin-1 (FBN1) in the Marfan Syndrome and Related Disorders
,”
Hum. Mol. Genet.
,
4
(
Suppl. 1
), pp.
1799
1809
.
40.
Krause
,
K. J.
,
2000
, “
Marfan Syndrome: Literature Review of Mortality Studies
,”
J. Insur. Med.
,
32
(
2
), pp.
79
88
.http://aaim.developmentwebsite.ca/journal-of-insurance-medicine/jim/2000/032-02-0079.pdf
41.
Carta
,
L.
,
Pereira
,
L.
,
Arteaga-Solis
,
E.
,
Lee-Arteaga
,
S. Y.
,
Lenart
,
B.
,
Starcher
,
B.
,
Merkel
,
C. A.
,
Sukoyan
,
M.
,
Kerkis
,
A.
,
Hazeki
,
N.
,
Keene
,
D. R.
,
Sakai
,
L. Y.
, and
Ramirez
,
F.
,
2006
, “
Fibrillins 1 and 2 Perform Partially Overlapping Functions During Aortic Development
,”
J. Biol. Chem.
,
281
(
12
), pp.
8016
8023
.
42.
Marque
,
V.
,
Kieffer
,
P.
,
Gayraud
,
B.
,
Lartaud-Idjouadiene
,
I.
,
Ramirez
,
F.
, and
Atkinson
,
J.
,
2001
, “
Aortic Wall Mechanics and Composition in a Transgenic Mouse Model of Marfan Syndrome
,”
Arterioscler. Thromb. Vasc. Biol.
,
21
(7), pp.
1184
1189
.
43.
Ferruzzi
,
J.
,
Collins
,
M. J.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2011
, “
Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome
,”
Cardiovasc. Res.
,
92
(
2
), pp.
287
295
.
44.
Putnam
,
E. A.
,
Zhang
,
H.
,
Ramirez
,
F.
, and
Milewicz
,
D. M.
,
1995
, “
Fibrillin–2 (FBN2) Mutations Result in the Marfan–Like Disorder, Congenital Contractural Arachnodactyly
,”
Nat. Genet.
,
11
(
4
), pp.
456
458
.
45.
Sabatier
,
L.
,
Miosge
,
N.
,
Hubmacher
,
D.
,
Lin
,
G.
,
Davis
,
E. C.
, and
Reinhardt
,
D. P.
,
2011
, “
Fibrillin-3 Expression in Human Development
,”
Matrix Biol.
,
30
(
1
), pp.
43
52
.
46.
De Vega
,
S.
,
Iwamoto
,
T.
, and
Yamada
,
Y.
, 2009, “
Fibulins: Multiple Roles in Matrix Structures and Tissue Functions
,”
Cell. Mol. Life Sci.
,
66
(11–12), pp. 1890–1902.
47.
Roark
,
E. F.
,
Keene
,
D. R.
,
Haudenschild
,
C. C.
,
Godyna
,
S.
,
Little
,
C. D.
, and
Argraves
,
W. S.
,
1995
, “
The Association of Human Fibulin-1 With Elastic Fibers: An Immunohistological, Ultrastructural, and RNA Study
,”
J. Histochem. Cytochem.
,
43
(
4
), pp.
401
411
.
48.
Reinhardt
,
D. P.
,
Sasaki
,
T.
,
Dzamba
,
B. J.
,
Keene
,
D. R.
,
Chu
,
M. L.
,
Göhring
,
W.
,
Timpl
,
R.
, and
Sakai
,
L. Y.
,
1996
, “
Fibrillin-1 and Fibulin-2 Interact and Are Colocalized in Some Tissues
,”
J. Biol. Chem.
,
271
(
32
), pp.
19489
19496
.
49.
Yamauchi
,
Y.
,
Tsuruga
,
E.
,
Nakashima
,
K.
,
Sawa
,
Y.
, and
Ishikawa
,
H.
,
2010
, “
Fibulin-4 and -5, but Not Fibulin-2, Are Associated With Tropoelastin Deposition in Elastin-Producing Cell Culture
,”
ACTA Histochem. Cytochem.
,
43
(
6
), pp.
131
138
.
50.
Hucthagowder
,
V.
,
Sausgruber
,
N.
,
Kim
,
K. H.
,
Angle
,
B.
,
Marmorstein
,
L. Y.
, and
Urban
,
Z.
,
2006
, “
Fibulin-4: A Novel Gene for an Autosomal Recessive Cutis Laxa Syndrome
,”
Am. J. Hum. Genet.
,
78
(
6
), pp.
1075
1080
.
51.
McLaughlin
,
P. J.
,
Chen
,
Q.
,
Horiguchi
,
M.
,
Starcher
,
B. C.
,
Stanton
,
J. B.
,
Broekelmann
,
T. J.
,
Marmorstein
,
A. D.
,
McKay
,
B.
,
Mecham
,
R.
,
Nakamura
,
T.
, and
Marmorstein
,
L. Y.
,
2006
, “
Targeted Disruption of Fibulin-4 Abolishes Elastogenesis and Causes Perinatal Lethality in Mice
,”
Mol. Cell. Biol.
,
26
(
5
), pp.
1700
1709
.
52.
Le
,
V. P.
,
Yamashiro
,
Y.
,
Yanagisawa
,
H.
, and
Wagenseil
,
J. E.
,
2014
, “
Measuring, Reversing, and Modeling the Mechanical Changes Due to the Absence of Fibulin-4 in Mouse Arteries
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1081
1095
.
53.
Halabi
,
C. M.
,
Broekelmann
,
T. J.
,
Lin
,
M.
,
Lee
,
V. S.
,
Chu
,
M.-L.
, and
Mecham
,
R. P.
,
2017
, “
Fibulin-4 Is Essential for Maintaining Arterial Wall Integrity in Conduit But Not Muscular Arteries
,”
Sci. Adv.
,
3
(
5
), p. e1602532.
54.
Loeys
,
B.
,
Van Maldergem
,
L.
,
Mortier
,
G.
,
Coucke
,
P.
,
Gerniers
,
S.
,
Naeyaert
,
J.-M.
, and
De Paepe
,
A.
,
2002
, “
Homozygosity for a Missense Mutation in Fibulin-5 (FBLN5) Results in a Severe Form of Cutis Laxa
,”
Hum. Mol. Genet.
,
11
(
18
), pp.
2113
2118
.
55.
Wan
,
W.
,
Yanagisawa
,
H.
, and
Gleason
,
R. L.
, Jr.
,
2010
, “
Biomechanical and Microstructural Properties of Common Carotid Arteries From Fibulin-5 Null Mice
,”
Ann. Biomed. Eng.
,
38
(
12
), pp.
3605
3617
.
56.
Ferruzzi
,
J.
,
Bersi
,
M. R.
,
Uman
,
S.
,
Yanagisawa
,
H.
, and
Humphrey
,
J. D.
,
2015
, “
Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
031007
.
57.
Lucero
,
H. A.
, and
Kagan
,
H. M.
,
2006
, “
Lysyl Oxidase: An Oxidative Enzyme and Effector of Cell Function
,”
Cell. Mol. Life Sci.
,
63
(
19
), pp.
2304
2316
.
58.
Molnar
,
J.
,
Fong
,
K. S. K.
,
He
,
Q. P.
,
Hayashi
,
K.
,
Kim
,
Y.
,
Fong
,
S. F. T.
,
Fogelgren
,
B.
,
Szauter
,
K. M.
,
Mink
,
M.
, and
Csiszar
,
K.
,
2003
, “
Structural and Functional Diversity of Lysyl Oxidase and the LOX-Like Proteins
,”
Biochim. Biophys. Acta (BBA)-Proteins Proteomics
,
1647
(
1
), pp.
220
224
.
59.
Kuivaniemi
,
H.
,
Peltonen
,
L.
,
Palotie
,
A.
,
Kaitila
,
I.
, and
Kivirikko
,
K. I.
, 1982, “
Abnormal Copper Metabolism and Deficient Lysyl Oxidase Activity in a Heritable Connective Tissue Disorder
,”
J. Clin. Invest.
,
69
(3), pp. 730–733.
60.
Sibon
,
I.
,
Sommer
,
P.
,
Daniel Lamaziere
,
J. M.
, and
Bonnet
,
J.
,
2005
, “
Lysyl Oxidase Deficiency: A New Cause of Human Arterial Dissection
,”
Heart
,
91
(5), p. e33.
61.
Mäki
,
J. M.
,
Räsänen
,
J.
,
Tikkanen
,
H.
,
Sormunen
,
R.
,
Mäkikallio
,
K.
,
Kivirikko
,
K. I.
, and
Soininen
,
R.
,
2002
, “
Inactivation of the Lysyl Oxidase Gene Lox Leads to Aortic Aneurysms, Cardiovascular Dysfunction, and Perinatal Death in Mice
,”
Circulation
,
106
(
19
), pp.
2503
2509
.
62.
Staiculescu
,
M. C.
,
Kim
,
J.
,
Mecham
,
R. P.
, and
Wagenseil
,
J.
,
2017
, “
Mechanical Behavior and Matrisome Gene Expression in Aneurysm-Prone Thoracic Aorta of Newborn Lysyl Oxidase Knockout Mice
,”
Am. J. Physiol. Circ. Physiol.
,
313
(
2
), pp.
H446
H456
.
63.
Thorleifsson
,
G.
,
Magnusson
,
K. P.
,
Sulem
,
P.
,
Walters
,
G. B.
,
Gudbjartsson
,
D. F.
,
Stefansson
,
H.
,
Jonsson
,
T.
,
Jonasdottir
,
A.
,
Jonasdottir
,
A.
,
Stefansdottir
,
G.
,
Masson
,
G.
,
Hardarson
,
G. A.
,
Petursson
,
H.
,
Arnarsson
,
A.
,
Motallebipour
,
M.
,
Wallerman
,
O.
,
Wadelius
,
C.
,
Gulcher
,
J. R.
,
Thorsteinsdottir
,
U.
,
Kong
,
A.
,
Jonasson
,
F.
, and
Stefansson
,
K.
,
2007
, “
Common Sequence Variants in the LOXL1 Gene Confer Susceptibility to Exfoliation Glaucoma
,”
Science
,
317
(
5843
), pp.
1397
1400
.
64.
Liu
,
X.
,
Zhao
,
Y.
,
Gao
,
J.
,
Pawlyk
,
B.
,
Starcher
,
B.
,
Spencer
,
J. A.
,
Yanagisawa
,
H.
,
Zuo
,
J.
, and
Li
,
T.
,
2004
, “
Elastic Fiber Homeostasis Requires Lysyl Oxidase–Like 1 Protein
,”
Nat. Genet.
,
36
(
2
), pp.
178
182
.
65.
Colombatti
,
A.
,
Spessotto
,
P.
,
Doliana
,
R.
,
Mongiat
,
M.
,
Bressan
,
G. M.
, and
Esposito
,
G.
,
2011
, “
The EMILIN/Multimerin Family
,”
Front. Immunol.
,
2
, p.
93
.
66.
Zanetti
,
M.
,
Braghetta
,
P.
,
Sabatelli
,
P.
,
Mura
,
I.
,
Doliana
,
R.
,
Colombatti
,
A.
,
Volpin
,
D.
,
Bonaldo
,
P.
, and
Bressan
,
G. M.
,
2004
, “
EMILIN-1 Deficiency Induces Elastogenesis and Vascular Cell Defects
,”
Mol. Cell. Biol.
,
24
(
2
), pp.
638
650
.
67.
Zacchigna
,
L.
,
Vecchione
,
C.
,
Notte
,
A.
,
Cordenonsi
,
M.
,
Dupont
,
S.
,
Maretto
,
S.
,
Cifelli
,
G.
,
Ferrari
,
A.
,
Maffei
,
A.
,
Fabbro
,
C.
,
Braghetta
,
P.
,
Marino
,
G.
,
Selvetella
,
G.
,
Aretini
,
A.
,
Colonnese
,
C.
,
Bettarini
,
U.
,
Russo
,
G.
,
Soligo
,
S.
,
Adorno
,
M.
,
Bonaldo
,
P.
,
Volpin
,
D.
,
Piccolo
,
S.
,
Lembo
,
G.
, and
Bressan
,
G. M.
,
2006
, “
Emilin1 Links TGF-β Maturation to Blood Pressure Homeostasis
,”
Cell
,
124
(
5
), pp.
929
942
.
68.
Weinbaum
,
J. S.
,
Broekelmann
,
T. J.
,
Pierce
,
R. A.
,
Werneck
,
C. C.
,
Segade
,
F.
,
Craft
,
C. S.
,
Knutsen
,
R. H.
, and
Mecham
,
R. P.
,
2008
, “
Deficiency in Microfibril-Associated Glycoprotein-1 Leads to Complex Phenotypes in Multiple Organ Systems
,”
J. Biol. Chem.
,
283
(
37
), pp.
25533
25543
.
69.
Gibson
,
M. A.
,
Leavesley
,
D. I.
, and
Ashman
,
L. K.
,
1999
, “
Microfibril-Associated Glycoprotein-2 Specifically Interacts With a Range of Bovine and Human Cell Types Via αVβ3 Integrin
,”
J. Biol. Chem.
,
274
(
19
), pp.
13060
13065
.
70.
Werneck
,
C. C.
,
Vicente
,
C. P.
,
Weinberg
,
J. S.
,
Shifren
,
A.
,
Pierce
,
R. A.
,
Broekelmann
,
T. J.
,
Tollefsen
,
D. M.
, and
Mecham
,
R. P.
,
2008
, “
Mice Lacking the Extracellular Matrix Protein MAGP1 Display Delayed Thrombotic Occlusion Following Vessel Injury
,”
Blood
,
111
(
8
), pp.
4137
4144
.
71.
Iozzo
,
R. V.
, and
Murdoch
,
A. D.
, 2016, “
Proteoglycans of the Extracellular Environment: Clues From the Gene and Protein Side Offer Novel Perspectives in Molecular Diversity and Function
,”
FASEB J.
,
10
(
5
), pp.
598
614
.http://www.fasebj.org/content/10/5/598.abstract
72.
Trask
,
B. C.
,
Trask
,
T. M.
,
Broekelmann
,
T.
, and
Mecham
,
R. P.
,
2000
, “
The Microfibrillar Proteins MAGP-1 and Fibrillin-1 Form a Ternary Complex With the Chondroitin Sulfate Proteoglycan Decorin
,”
Mol. Biol. Cell
,
11
(
5
), pp.
1499
1507
.
73.
Reinboth
,
B.
,
Hanssen
,
E.
,
Cleary
,
E. G.
, and
Gibson
,
M. A.
,
2002
, “
Molecular Interactions of Biglycan and Decorin With Elastic Fiber Components: Biglycan Forms a Ternary Complex With Tropoelastin and Microfibril-Associated Glycoprotein 1
,”
J. Biol. Chem.
,
277
(
6
), pp.
3950
3957
.
74.
Sabatier
,
L.
,
Djokic
,
J.
,
Hubmacher
,
D.
,
Dzafik
,
D.
,
Nelea
,
V.
, and
Reinhardt
,
D. P.
,
2014
, “
Heparin/Heparan Sulfate Controls Fibrillin-1, -2 and -3 Self-Interactions in Microfibril Assembly
,”
FEBS Lett.
,
588
(
17
), pp.
2890
2897
.
75.
Papke
,
C. L.
,
Tsunezumi
,
J.
,
Ringuette
,
L. J.
,
Nagaoka
,
H.
,
Terajima
,
M.
,
Yamashiro
,
Y.
,
Urquhart
,
G.
,
Yamauchi
,
M.
,
Davis
,
E. C.
, and
Yanagisawa
,
H.
,
2015
, “
Loss of Fibulin-4 Disrupts Collagen Synthesis and Maturation: Implications for Pathology Resulting From EFEMP2 Mutations
,”
Hum. Mol. Genet.
,
24
(
20
), pp.
5867
5879
.
76.
Yanagisawa
,
H.
, and
Davis
,
E. C.
,
2010
, “
Unraveling the Mechanism of Elastic Fiber Assembly: The Roles of Short Fibulins
,”
Int. J. Biochem. Cell. Biol.
,
42
(
7
), pp.
1084
1093
.
77.
Kozel
,
B. A.
,
Rongish
,
B. J.
,
Czirok
,
A.
,
Zach
,
J.
,
Little
,
C. D.
,
Davis
,
E. C.
,
Knutsen
,
R. H.
,
Wagenseil
,
J. E.
,
Levy
,
M. A.
, and
Mecham
,
R. P.
,
2006
, “
Elastic Fiber Formation: A Dynamic View of Extracellular Matrix Assembly Using Timer Reporters
,”
J. Cell. Physiol.
,
207
(
1
), pp.
87
96
.
78.
Milewicz
,
D. M.
,
Pyeritz
,
R. E.
,
Stanley Crawford
,
E.
, and
Byers
,
P. H.
,
1992
, “
Marfan Syndrome: Defective Synthesis, Secretion, and Extracellular Matrix Formation of Fibrillin by Cultured Dermal Fibroblasts
,”
J. Clin. Invest.
,
89
(
1
), pp.
79
86
.
79.
Rock
,
M. J.
,
Cain
,
S. A.
,
Freeman
,
L. J.
,
Morgan
,
A.
,
Mellody
,
K.
,
Marson
,
A.
,
Shuttleworth
,
C. A.
,
Weiss
,
A. S.
, and
Kielty
,
C. M.
,
2004
, “
Molecular Basis of Elastic Fiber Formation. Critical Interactions and a Tropoelastin-Fibrillin-1 Cross-Link
,”
J. Biol. Chem.
,
279
(
22
), pp.
23748
23758
.
80.
Bax
,
D. V.
,
Bernard
,
S. E.
,
Lomas
,
A.
,
Morgan
,
A.
,
Humphries
,
J.
,
Shuttleworth
,
C. A.
,
Humphries
,
M. J.
, and
Kielty
,
C. M.
,
2003
, “
Cell Adhesion to Fibrillin-1 Molecules and Microfibrils Is Mediated by Alpha 5 Beta 1 and Alpha v Beta 3 Integrins
,”
J. Biol. Chem.
,
278
(
36
), pp.
34605
34616
.
81.
Broekelmann
,
T. J.
,
Kozel
,
B. A.
,
Ishibashi
,
H.
,
Werneck
,
C. C.
,
Keeley
,
F. W.
,
Zhang
,
L.
, and
Mecham
,
R. P.
,
2005
, “
Tropoelastin Interacts With Cell-Surface Glycosaminoglycans Via Its COOH-Terminal Domain
,”
J. Biol. Chem.
,
280
(
49
), pp.
40939
40947
.
82.
Noda
,
K.
,
Dabovic
,
B.
,
Takagi
,
K.
,
Inoue
,
T.
,
Horiguchi
,
M.
,
Hirai
,
M.
,
Fujikawa
,
Y.
,
Akama
,
T. O.
,
Kusumoto
,
K.
,
Zilberberg
,
L.
,
Sakai
,
L. Y.
,
Koli
,
K.
,
Naitoh
,
M.
,
von Melchner
,
H.
,
Suzuki
,
S.
,
Rifkin
,
D. B.
, and
Nakamura
,
T.
,
2013
, “
Latent TGF-β Binding Protein 4 Promotes Elastic Fiber Assembly by Interacting With Fibulin-5
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
8
), pp.
2852
2857
.
83.
Kinsey
,
R.
,
Williamson
,
M. R.
,
Chaudhry
,
S.
,
Mellody
,
K. T.
,
McGovern
,
A.
,
Takahashi
,
S.
,
Shuttleworth
,
C. A.
, and
Kielty
,
C. M.
,
2008
, “
Fibrillin-1 Microfibril Deposition Is Dependent on Fibronectin Assembly
,”
J. Cell. Sci.
,
121
(
16
), pp. 2696–2704.
84.
Zilberberg
,
L.
,
Todorovic
,
V.
,
Dabovic
,
B.
,
Horiguchi
,
M.
,
Couroussé
,
T.
,
Sakai
,
L. Y.
, and
Rifkin
,
D. B.
,
2012
, “
Specificity of Latent TGF-β Binding Protein (LTBP) Incorporation Into Matrix: Role of Fibrillins and Fibronectin
,”
J. Cell. Physiol.
,
227
(
12
), pp.
3828
3836
.
85.
Nallasamy
,
S.
,
Yoshida
,
K.
,
Akins
,
M.
,
Myers
,
K.
,
Iozzo
,
R.
, and
Mahendroo
,
M.
,
2017
, “
Steroid Hormones Are Key Modulators of Tissue Mechanical Function Via Regulation of Collagen and Elastic Fibers
,”
Endocrinology
,
158
(
4
), pp.
950
962
.
86.
Eoh
,
J. H.
,
Shen
,
N.
,
Burke
,
J. A.
,
Hinderer
,
S.
,
Xia
,
Z.
,
Schenke-Layland
,
K.
, and
Gerecht
,
S.
,
2017
, “
Enhanced Elastin Synthesis and Maturation in Human Vascular Smooth Muscle Tissue Derived From Induced-Pluripotent Stem Cells
,”
Acta Biomater.
,
52
, pp.
49
59
.
87.
Coffin
,
J.
, and
Poole
,
T.
,
1988
, “
Embryonic Vascular Development: Immunohistochemical Identification of the Origin and Subsequent Morphogenesis of the Major Vessel Primordia in Quail Embryos
,”
Development
,
102
(
4
), pp.
735
748
.https://www.ncbi.nlm.nih.gov/pubmed/3048971
88.
Sato
,
Y.
,
2013
, “
Dorsal Aorta Formation: Separate Origins, Lateral-to-Medial Migration, and Remodeling
,”
Dev. Growth Differ.
,
55
(
1
), pp.
113
129
.
89.
DeRuiter
,
M. C.
,
Poelmann
,
R. E.
,
VanMunsteren
,
J. C.
,
Mironov
,
V.
,
Markwald
,
R. R.
, and
Gittenberger-de Groot
,
A. C.
,
1997
, “
Embryonic Endothelial Cells Transdifferentiate Into Mesenchymal Cells Expressing Smooth Muscle Actins In Vivo and In Vitro
,”
Circ. Res.
,
80
(
4
), pp.
444
451
.
90.
Frid
,
M. G.
,
Kale
,
V. A.
, and
Stenmark
,
K. R.
,
2002
, “
Mature Vascular Endothelium Can Give Rise to Smooth Muscle Cells Via Endothelial-Mesenchymal Transdifferentiation
,”
Circ. Res.
,
90
(
11
), pp.
1189
1196
.
91.
Hellstrom
,
M.
,
Lindahl
,
P.
,
Abramsson
,
A.
, and
Betsholtz
,
C.
,
1999
, “
Role of PDGF-B and PDGFR-Beta in Recruitment of Vascular Smooth Muscle Cells and Pericytes During Embryonic Blood Vessel Formation in the Mouse
,”
Development
,
126
(
14
), pp.
3047
3055
.http://dev.biologists.org/content/126/14/3047
92.
Dickson
,
M. C.
,
Martin
,
J. S.
,
Cousins
,
F. M.
,
Kulkarni
,
A. B.
,
Karlsson
,
S.
, and
Akhurst
,
R. J.
,
1995
, “
Defective Haematopoiesis and Vasculogenesis in Transforming Growth Factor-Beta 1 Knock Out Mice
,”
Development
,
121
(
6
), pp.
1845
1854
.http://dev.biologists.org/content/121/6/1845
93.
Folkman
,
J.
, and
D'Amore
,
P. A.
,
1996
, “
Blood Vessel Formation: What Is Its Molecular Basis?
,”
Cell
,
87
(
7
), pp.
1153
1155
.
94.
Carmeliet
,
P.
,
2000
, “
Mechanisms of Angiogenesis and Arteriogenesis
,”
Nat. Med.
,
6
(
4
), p.
389
.
95.
Gale
,
N. W.
,
Dominguez
,
M. G.
,
Noguera
,
I.
,
Pan
,
L.
,
Hughes
,
V.
,
Valenzuela
,
D. M.
,
Murphy
,
A. J.
,
Adams
,
N. C.
,
Lin
,
H. C.
,
Holash
,
J.
,
Thurston
,
G.
, and
Yancopoulos
,
G. D.
,
2004
, “
Haploinsufficiency of Delta-Like 4 Ligand Results in Embryonic Lethality Due to Major Defects in Arterial and Vascular Development
,”
Proc. Natl. Acad. Sci. U. S. A.
,
101
(
45
), pp.
15949
15954
.
96.
Frid
,
M. G.
,
Moiseeva
,
E. P.
, and
Stenmark
,
K. R.
,
1994
, “
Multiple Phenotypically Distinct Smooth Muscle Cell Populations Exist in the Adult and Developing Bovine Pulmonary Arterial Media In Vivo
,”
Circ. Res.
,
75
(
4
), pp.
669
681
.
97.
Rosenquist
,
T. H.
,
McCoy
,
J. R.
,
Waldo
,
K. L.
, and
Kirby
,
M. L.
,
1988
, “
Origin and Propagation of Elastogenesis in the Developing Cardiovascular System
,”
Anat. Rec.
,
221
(
4
), pp.
860
871
.
98.
Rongish
,
B. J.
,
Drake
,
C. J.
,
Argraves
,
W. S.
, and
Little
,
C. D.
,
1998
, “
Identification of the Developmental Marker, JB3-Antigen, as Fibrillin-2 and Its de Novo Organization Into Embryonic Microfibrous Arrays
,”
Dev. Dyn.
,
212
(
3
), pp.
461
471
.
99.
Karnik
,
S. K.
,
Brooke
,
B. S.
,
Bayes-Genis
,
A.
,
Sorensen
,
L.
,
Wythe
,
J. D.
,
Schwartz
,
R. S.
,
Keating
,
M. T.
, and
Li
,
D. Y.
,
2003
, “
A Critical Role for Elastin Signaling in Vascular Morphogenesis and Disease
,”
Development
,
130
(
2
), pp.
411
423
.
100.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2009
, “
Vascular Extracellular Matrix and Arterial Mechanics
,”
Physiol. Rev.
,
89
(
3
), pp.
957
989
.
101.
Bendeck
,
M. P.
,
Keeley
,
F. W.
, and
Langille
,
B. L.
,
1994
, “
Perinatal Accumulation of Arterial Wall Constituents: Relation to Hemodynamic Changes at Birth
,”
Am. J. Physiol.
,
267
(
6
), pp.
H2268
H2279
.http://www.physiology.org/doi/pdf/10.1152/ajpheart.1994.267.6.H2268
102.
Langille
,
L. B.
,
1993
, “
Remodeling of Developing and Mature Arteries: Endothelium, Smooth Muscle, and Matrix
,”
J. Cardiovasc. Pharmacol.
,
21
, pp.
S11
S17
.
103.
Gerrity
,
R. G.
, and
Cliff
,
W. J.
,
1975
, “
The Aortic Tunica Media of the Developing Rat. I. Quantitative Stereologic and Biochemical Analysis
,”
Lab. Invest.
,
32
(
5
), pp.
585
600
.http://europepmc.org/abstract/med/1127878
104.
Wang
,
Y.
,
Dur
,
O.
,
Patrick
,
M. J.
,
Tinney
,
J. P.
,
Tobita
,
K.
,
Keller
,
B. B.
, and
Pekkan
,
K.
,
2009
, “
Aortic Arch Morphogenesis and Flow Modeling in the Chick Embryo
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1069
1081
.
105.
Kowalski
,
W. J.
,
Dur
,
O.
,
Wang
,
Y.
,
Patrick
,
M. J.
,
Tinney
,
J. P.
,
Keller
,
B. B.
, and
Pekkan
,
K.
,
2013
, “
Critical Transitions in Early Embryonic Aortic Arch Patterning and Hemodynamics
,”
PLoS One
,
8
(
3
), p.
e60271
.
106.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
(
1)
, pp.
1
8
.
107.
Dobrin
,
P. B.
,
Schwarcz
,
T. H.
, and
Mrkvicka
,
R.
,
1990
, “
Longitudinal Retractive Force in Pressurized Dog and Human Arteries
,”
J. Surg. Res.
,
48
(
2
), pp.
116
120
.
108.
Wolinsky
,
H.
, and
Glagov
,
S.
,
1967
, “
A Lamellar Unit of Aortic Medial Structure and Function in Mammals
,”
Circ. Res.
,
20
(
1
), pp.
99
111
.
109.
Wolinsky
,
H.
,
1970
, “
Comparison of Medial Growth of Human Thoracic and Abdominal Aortas
,”
Circ. Res.
,
27
(
4
), pp.
531
538
.
110.
Gibbons
,
C. A.
, and
Shadwick
,
R. E.
,
1989
, “
Functional Similarities in the Mechanical Design of the Aorta in Lower Vertebrates and Mammals
,”
Experientia
,
45
(
11–12
), pp.
1083
1088
.
111.
Wagenseil
,
J. E.
,
Ciliberto
,
C. H.
,
Knutsen
,
R. H.
,
Levy
,
M. A.
,
Kovacs
,
A.
, and
Mecham
,
R. P.
,
2009
, “
Reduced Vessel Elasticity Alters Cardiovascular Structure and Function in Newborn Mice
,”
Circ. Res.
,
104
(
10
), pp.
1217
1224
.
112.
Rhodes
,
J. M.
, and
Simons
,
M.
,
2007
, “
The Extracellular Matrix and Blood Vessel Formation: Not Just a Scaffold
,”
J. Cell. Mol. Med.
,
11
(
2
), pp.
176
205
.
113.
Chen
,
E.
,
Larson
,
J. D.
, and
Ekker
,
S. C.
,
2006
, “
Functional Analysis of Zebrafish Microfibril-Associated Glycoprotein-1 (Magp1) In Vivo Reveals Roles for Microfibrils in Vascular Development and Function
,”
Blood
,
107
(
11
), pp.
4364
4374
.
114.
Midgett
,
M.
, and
Rugonyi
,
S.
,
2014
, “
Congenital Heart Malformations Induced by Hemodynamic Altering Surgical Interventions
,”
Front. Physiol.
,
5
, pp.
1
287
.
115.
Papke
,
C. L.
, and
Yanagisawa
,
H.
,
2014
, “
Fibulin-4 and Fibulin-5 in Elastogenesis and Beyond: Insights From Mouse and Human Studies
,”
Matrix Biol.
,
37
, pp.
142
149
.
116.
Huang
,
J.
,
Yamashiro
,
Y.
,
Papke
,
C. L.
,
Ikeda
,
Y.
,
Lin
,
Y.
,
Patel
,
M.
,
Inagami
,
T.
,
Le
,
V. P.
,
Wagenseil
,
J. E.
, and
Yanagisawa
,
H.
,
2013
, “
Angiotensin-Converting Enzyme-Induced Activation of Local Angiotensin Signaling Is Required for Ascending Aortic Aneurysms in Fibulin-4-Deficient Mice
,”
Sci. Transl. Med.
,
5
(
183
), p. 183ra58.
117.
Pratt
,
B.
, and
Curci
,
J.
,
2010
, “
Arterial Elastic Fiber Structure. Function and Potential Roles in Acute Aortic Dissection
,”
J. Cardiovasc. Surg. (Torino).
,
51
(
5
), pp.
647
656
.https://www.minervamedica.it/en/journals/cardiovascular-surgery/article.php?cod=R37Y2010N05A0647
118.
Chapman
,
S. L.
,
Sicot
,
F. X.
,
Davis
,
E. C.
,
Huang
,
J.
,
Sasaki
,
T.
,
Chu
,
M. L.
, and
Yanagisawa
,
H.
,
2010
, “
Fibulin-2 and Fibulin-5 Cooperatively Function to Form the Internal Elastic Lamina and Protect From Vascular Injury
,”
Arterioscler. Thromb. Vasc. Biol.
,
30
(
1
), pp.
68
74
.
119.
Yamashiro
,
Y.
,
Papke
,
C. L.
,
Kim
,
J.
,
Ringuette
,
L.-J.
,
Zhang
,
Q.-J.
,
Liu
,
Z.-P.
,
Mirzaei
,
H.
,
Wagenseil
,
J. E.
,
Davis
,
E. C.
, and
Yanagisawa
,
H.
,
2015
, “
Abnormal Mechanosensing and Cofilin Activation Promote the Progression of Ascending Aortic Aneurysms in Mice
,”
Sci. Signal.
,
8
(
399
), p. ra105.
120.
Eberth
,
J. F.
,
Cardamone
,
L.
, and
Humphrey
,
J. D.
,
2011
, “
Evolving Biaxial Mechanical Properties of Mouse Carotid Arteries in Hypertension
,”
J. Biomech.
,
44
(
14
), pp.
2532
2537
.
121.
Eberth
,
J. F.
,
Gresham
,
V. C.
,
Reddy
,
A. K.
,
Popovic
,
N.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2009
, “
Importance of Pulsatility in Hypertensive Carotid Artery Growth and Remodeling
,”
J. Hypertens.
,
27
(
10
), pp.
2010
2021
.
122.
Majesky
,
M. W.
,
2007
, “
Developmental Basis of Vascular Smooth Muscle Diversity
,”
Arterioscler. Thromb. Vasc. Biol.
,
27
(
6
), pp.
1248
1258
.
123.
Katsuda
,
S.
, and
Kaji
,
T.
,
2003
, “
Atherosclerosis and Extracellular Matrix
,”
J. Atheroscler. Thromb.
,
10
(
5
), pp.
267
274
.
124.
Maedeker
,
J. A.
,
Stoka
,
K. V.
,
Bhayani
,
S. A.
,
Gardner
,
W. S.
,
Bennett
,
L.
,
Procknow
,
J. D.
,
Staiculescu
,
M. C.
,
Walji
,
T. A.
,
Craft
,
C. S.
, and
Wagenseil
,
J. E.
,
2016
, “
Hypertension and Decreased Aortic Compliance Due to Reduced Elastin Amounts Do Not Increase Atherosclerotic Plaque Accumulation in Ldlr-/- Mice
,”
Atherosclerosis
,
249
, pp.
22
29
.
125.
Henson
,
G. D.
,
Walker
,
A. E.
,
Reihl
,
K. D.
,
Donato
,
A. J.
, and
Lesniewski
,
L. A.
,
2014
, “
Dichotomous Mechanisms of Aortic Stiffening in High‐Fat Diet Fed Young and Old B6D2F1 Mice
,”
Physiol. Rep.
,
2
(
3
), p.
e00268
.
126.
Du
,
B.
,
Ouyang
,
A.
,
Eng
,
J. S.
, and
Fleenor
,
B. S.
,
2015
, “
Aortic Perivascular Adipose-Derived Interleukin-6 Contributes to Arterial Stiffness in Low-Density Lipoprotein Receptor Deficient Mice
,”
Am. J. Physiol. Circ. Physiol.
,
308
(
11
), pp.
H1382
H1390
.
127.
Pasquali‐Ronchetti
,
I.
, and
Baccarani‐Contri
,
M.
,
1997
, “
Elastic Fiber During Development and Aging
,”
Microsc. Res. Tech.
,
38
(
4
), pp.
428
435
.
128.
Ferruzzi
,
J.
,
Bersi
,
M. R.
,
Mecham
,
R. P.
,
Ramirez
,
F.
,
Yanagisawa
,
H.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2016
, “
Loss of Elastic Fiber Integrity Compromises Common Carotid Artery Function: Implications for Vascular Aging
,”
Artery Res.
,
14
, pp.
41
52
.
129.
Chung
,
A. W. Y.
,
Au Yeung
,
K.
,
Sandor
,
G. G. S.
,
Judge
,
D. P.
,
Dietz
,
H. C.
, and
van Breemen
,
C.
,
2007
, “
Loss of Elastic Fiber Integrity and Reduction of Vascular Smooth Muscle Contraction Resulting From the Upregulated Activities of Matrix Metalloproteinase-2 and -9 in the Thoracic Aortic Aneurysm in Marfan Syndrome
,”
Circ. Res.
,
101
(
5
), pp. 512–522.
130.
Kim
,
J.
, and
Wagenseil
,
J. E.
,
2015
, “
Bio-Chemo-Mechanical Models of Vascular Mechanics
,”
Ann. Biomed. Eng.
,
43
(
7
), pp.
1477
1487
.
131.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. J. Physiol. Circ. Physiol.
,
237
(
5
), pp.
H620
H631
.
132.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1983
, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
268
274
.
133.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
(
1
), pp.
7
17
.
134.
Vaishnav
,
R. N.
,
Young
,
J. T.
, and
Patel
,
D. J.
,
1973
, “
Distribution of Stresses and of Strain-Energy Density Through the Wall Thickness in a Canine Aortic Segment
,”
Circ. Res.
,
32
, pp.
577
583
.
135.
Kas'yanov
,
V. A.
, and
Rachev
,
A. I.
,
1980
, “
Deformation of Blood Vessels upon Stretching, Internal Pressure, and Torsion
,”
Mech. Compos. Mater.
,
16
(
1
), pp.
76
80
.
136.
Klika
,
V.
,
Gaffney
,
E. A.
,
Chen
,
Y.-C.
, and
Brown
,
C. P.
,
2016
, “
An Overview of Multiphase Cartilage Mechanical Modelling and Its Role in Understanding Function and Pathology
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
139
157
.
137.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
McAfee
,
M. A.
,
Baldwin
,
A. L.
, and
Wilson
,
L. M.
,
1998
, “
Identification and Determination of Material Properties for Porohyperelastic Analysis of Large Arteries
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
188
194
.
138.
Johnson
,
M.
, and
Tarbell
,
J. M.
,
2001
, “
A Biphasic, Anisotropic Model of the Aortic Wall
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
52
57
.
139.
Zoumi
,
A.
,
Lu
,
X.
,
Kassab
,
G. S.
, and
Tromberg
,
B. J.
,
2004
, “
Imaging Coronary Artery Microstructure Using Second-Harmonic and Two-Photon Fluorescence Microscopy
,”
Biophys. J.
,
87
(
4
), pp.
2778
2786
.
140.
O'Connell
,
M. K.
,
Murthy
,
S.
,
Phan
,
S.
,
Xu
,
C.
,
Buchanan
,
J.
,
Spilker
,
R.
,
Dalman
,
R. L.
,
Zarins
,
C. K.
,
Denk
,
W.
, and
Taylor
,
C. A.
,
2008
, “
The Three-Dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal and Electron Microscopy Imaging
,”
Matrix Biol.
,
27
(
3
), pp.
171
181
.
141.
Zulliger
,
M. A.
,
Rachev
,
A.
, and
Stergiopulos
,
N.
,
2004
, “
A Constitutive Formulation of Arterial Mechanics Including Vascular Smooth Muscle Tone
,”
Am J. Physiol. Heart Circ. Physiol.
,
287
(
3
), pp.
H1335
H1343
.
142.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. B Biol. Sci.
,
126
(
843
), pp.
136
195
.
143.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
459
468
.
144.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
,
2008
, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
245
262.
145.
Spronck
,
B.
,
Megens
,
R. T. A.
,
Reesink
,
K. D.
, and
Delhaas
,
T.
,
2016
, “
A Method for Three-Dimensional Quantification of Vascular Smooth Muscle Orientation: Application in Viable Murine Carotid Arteries
,”
Biomech. Model. Mechanobiol.
,
15
(
2
), pp.
419
432
.
146.
Baek
,
S.
,
Gleason
,
R. L.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2007
, “
Theory of Small on Large: Potential Utility in Computations of Fluid-Solid Interactions in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
3070
3078
.
147.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.
148.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2004
, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
,
37
(
7
), pp.
989
1000
.
149.
Cacho
,
F.
,
Elbischger
,
P. J.
,
Rodríguez
,
J. F.
,
Doblaré
,
M.
, and
Holzapfel
,
G. A.
,
2007
, “
A Constitutive Model for Fibrous Tissues Considering Collagen Fiber Crimp
,”
Int. J. Non. Linear. Mech.
,
42
(2), p.
391
.
150.
Driessen
,
N. J. B.
,
Cox
,
M. A. J.
,
Bouten
,
C. V. C.
,
Baaijens
,
F. P. T.
,
Rufenacht
,
D.
, and
Stergiopulos
,
N.
,
2008
, “
Remodelling of the Angular Collagen Fiber Distribution in Cardiovascular Tissues
,”
Biomech. Model. Mechanobiol.
,
7
(
2
), pp.
93
103
.
151.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.
152.
Rezakhaniha
,
R.
, and
Stergiopulos
,
N.
,
2008
, “
A Structural Model of the Venous Wall Considering Elastin Anisotropy
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031017
.
153.
Kao
,
P. H.
,
Lammers
,
S. R.
,
Tian
,
L.
,
Hunter
,
K.
,
Stenmark
,
K. R.
,
Shandas
,
R.
, and
Qi
,
H. J.
,
2011
, “
A Microstructurally Driven Model for Pulmonary Artery Tissue
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051002
.
154.
Wang
,
Y.
,
Zeinali-Davarani
,
S.
, and
Zhang
,
Y.
,
2016
, “
Arterial Mechanics Considering the Structural and Mechanical Contributions of ECM Constituents
,”
J. Biomech.
,
49
(
12
), pp.
2358
2365
.
155.
Brown
,
R. E.
,
Butler
,
J. P.
,
Rogers
,
R. A.
, and
Leith
,
D. E.
,
1994
, “
Mechanical Connections Between Elastin and Collagen
,”
Connect Tissue Res.
,
30
(
4
), pp.
295
308
.
156.
Faffe
,
D. S.
, and
Zin
,
W. A.
,
2009
, “
Lung Parenchymal Mechanics in Health and Disease
,”
Physiol. Rev.
,
89
(
3
), pp.
759
775
.
157.
Chow
,
M. J.
,
Turcotte
,
R.
,
Lin
,
C. P.
, and
Zhang
,
Y.
,
2014
, “
Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen
,”
Biophys. J.
,
106
(
12
), pp.
2684
2692
.
158.
Schriefl
,
A. J.
,
Schmidt
,
T.
,
Balzani
,
D.
,
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2015
, “
Selective Enzymatic Removal of Elastin and Collagen From Human Abdominal Aortas: Uniaxial Mechanical Response and Constitutive Modeling
,”
Acta Biomater.
,
17
, pp.
125
136
.
159.
Skalak
,
R.
,
Dasgupta
,
G.
,
Moss
,
M.
,
Otten
,
E.
,
Dullemeijer
,
P.
, and
Vilmann
,
H.
,
1982
, “
Analytical Description of Growth
,”
J. Theor. Biol.
,
94
(
3
), pp.
555
577
.
160.
Cowin
,
S. C.
, and
Firoozbakhsh
,
K.
,
1981
, “
Bone Remodeling of Diaphysial Surfaces Under Constant Load: Theoretical Predictions
,”
J. Biomech.
,
14
(
7
), pp.
471
484
.
161.
Rodriguez
,
E. K.
,
Omens
,
J. H.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
,
1993
, “
Effect of Residual Stress on Transmural Sarcomere Length Distributions in Rat Left Ventricle
,”
Am. J. Physiol.
,
264
(
4
), pp.
H1048
H1056
.http://www.physiology.org/doi/pdf/10.1152/ajpheart.1993.264.4.H1048
162.
Chuong
,
C.-J.
, and
Fung
,
Y.-C.
,
1986
, “
Residual Stress in Arteries
,”
Frontiers in Biomechanics
,
Springer
, New York, pp.
117
129
.
163.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.
164.
Taber
,
L. A.
,
1998
, “
A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
348
354
165.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Model. Methods Appl. Sci.
,
12
(
3
), pp.
407
430
.
166.
Gleason
,
R. L.
,
Taber
,
L. A.
, and
Humphrey
,
J. D.
,
2004
, “
A 2-D Model of Flow-Induced Alterations in the Geometry, Structure, and Properties of Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
3
), pp.
371
381
.
167.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2004
, “
A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover
,”
J. Vasc. Res.
,
41
(
4
), pp.
352
363
.
168.
Vena
,
P.
,
Gastaldi
,
D.
,
Socci
,
L.
, and
Pennati
,
G.
,
2008
, “
An Anisotropic Model for Tissue Growth and Remodeling During Early Development of Cerebral Aneurysms
,”
Comput. Mater. Sci.
,
43
(
3
), pp.
565
577
.
169.
Valentín
,
A.
,
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2011
, “
A Multi-Layered Computational Model of Coupled Elastin Degradation, Vasoactive Dysfunction, and Collagenous Stiffening in Aortic Aging
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
2027
2045
.
170.
Wagenseil
,
J. E.
,
2011
, “
A Constrained Mixture Model for Developing Mouse Aorta
,”
Biomech. Model. Mechanobiol.
,
10
(
5
), pp.
671
687
.
171.
Valentín
,
A.
,
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2013
, “
A Finite Element-Based Constrained Mixture Implementation for Arterial Growth, Remodeling, and Adaptation: Theory and Numerical Verification
,”
Int. J. Numer. Method Biomed. Eng.
,
29
(
8
), pp.
822
849
.
172.
Wan
,
W.
,
Hansen
,
L.
, and
Gleason
,
R. L.
,
2010
, “
A 3-D Constrained Mixture Model for Mechanically Mediated Vascular Growth and Remodeling
,”
Biomech. Model. Mechanobiol.
,
9
(
4
), pp.
403
419
.
173.
Armstrong
,
M. H.
,
Buganza Tepole
,
A.
,
Kuhl
,
E.
,
Simon
,
B. R.
, and
Vande Geest
,
J. P.
,
2016
, “
A Finite Element Model for Mixed Porohyperelasticity With Transport, Swelling, and Growth
,”
PLoS One
,
11
(
4
), p.
e0152806
.
174.
Bazilevs
,
Y.
,
Hsu
,
M. C.
,
Zhang
,
Y.
,
Wang
,
W.
,
Liang
,
X.
,
Kvamsdal
,
T.
,
Brekken
,
R.
, and
Isaksen
,
J. G.
,
2010
, “
A Fully-Coupled Fluid-Structure Interaction Simulation of Cerebral Aneurysms
,”
Comput. Mech.
,
46
(
1
), pp.
3
16
.
175.
Alberto Figueroa
,
C.
,
Baek
,
S.
,
Taylor
,
C. A.
, and
Humphrey
,
J. D.
,
2009
, “
A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3583
3602
.
You do not currently have access to this content.