Almost a decade ago, hyperspectral imaging (HSI) was employed by the NASA in satellite imaging applications such as remote sensing technology. This technology has since been extensively used in the exploration of minerals, agricultural purposes, water resources, and urban development needs. Due to recent advancements in optical re-construction and imaging, HSI can now be applied down to micro- and nanometer scales possibly allowing for exquisite control and analysis of single cell to complex biological systems. This short review provides a description of the working principle of the HSI technology and how HSI can be used to assist, substitute, and validate traditional imaging technologies. This is followed by a description of the use of HSI for biological analysis and medical diagnostics with emphasis on single-cell analysis using HSI.

References

References
1.
Stender
,
A. S.
,
Marchuk
,
K.
,
Liu
,
C.
,
Sander
,
S.
,
Meyer
,
M. W.
,
Smith
,
E. A.
,
Neupane
,
B.
,
Wang
,
G.
,
Li
,
J.
, and
Cheng
,
J.
,
2013
, “
Single Cell Optical Imaging and Spectroscopy
,”
Chem. Rev.
,
113
(
4
), pp.
2469
2527
.
2.
Hickey
,
W. J.
,
Shetty
,
A. R.
,
Massey
,
R. J.
,
Toso
,
D. B.
, and
Austin
,
J.
,
2017
, “
Three‐Dimensional Bright‐Field Scanning Transmission Electron Microscopy Elucidate Novel Nanostructure in Microbial Biofilms
,”
J. Microsc.
,
265
(
1
), pp.
3
10
.
3.
Zheng
,
W.
,
Taylor
,
N.
,
Leiman
,
P.
, and
Egelman
,
E.
,
2017
, “
Cryo-EM of the Bacteriophage Tail Tube at Better Than 3.5 Å Resolution
,”
Biophys. J.
,
112
(
3
), pp.
573a
574a
.
4.
Galler
,
K.
,
Bräutigam
,
K.
,
Große
,
C.
,
Popp
,
J.
, and
Neugebauer
,
U.
,
2014
, “
Making a Big Thing of a Small Cell–Recent Advances in Single Cell Analysis
,”
Analyst
,
139
(
6
), pp.
1237
1273
.
5.
Seidman
,
D.
,
2007
, “
Three-Dimensional Atom-Probe Tomography: Advances and Applications
,”
Annu. Rev. Mater. Res.
,
37
, pp.
127
158
.
6.
Kherlopian
,
A.
,
Song
,
T.
,
Duan
,
Q.
,
Neimark
,
M.
,
Po
,
M.
,
Gohagan
,
J.
, and
Laine
,
A.
,
2008
, “
A Review of Imaging Techniques for Systems Biology
,”
BMC Syst. Biol.
,
2
(
1
), p.
74
.
7.
Amemiya
,
S.
,
Bard
,
A.
,
Fan
,
F.
,
Mirkin
,
M.
, and
Unwin
,
P.
,
2008
, “
Scanning Electrochemical Microscopy
,”
Annu. Rev. Anal. Chem.
,
1
, pp.
95
131
.
8.
Zhu
,
Y.
,
Zhang
,
J.
,
Li
,
A.
,
Zhang
,
Y.
, and
Fan
,
C.
,
2017
, “
Synchrotron-Based X-Ray Microscopy for Sub-100 nm Resolution Cell Imaging
,”
Curr. Opin. Chem. Biol.
,
39
, pp.
11
16
.
9.
Downes
,
A.
,
Mouras
,
R.
,
Bagnaninchi
,
P.
, and
Elfick
,
A.
,
2011
, “
Raman Spectroscopy and CARS Microscopy of Stem Cells and Their Derivatives
,”
J. Raman Spectrosc.
,
42
(
10
), pp.
1864
1870
.
10.
Gerber
,
H.-P.
,
Malik
,
A. K.
,
Solar
,
G. P.
,
Sherman
,
D.
,
Liang
,
X. H.
,
Meng
,
G.
,
Hong
,
K.
,
Marsters
,
J. C.
, and
Ferrara
,
N.
,
2002
, “
VEGF Regulates Haematopoietic Stem Cell Survival by an Internal Autocrine Loop Mechanism
,”
Nature
,
417
(
6892
), pp.
954
958
.
11.
Schultz
,
R. A.
,
Nielsen
,
T.
,
Zavaleta
,
J. R.
,
Ruch
,
R.
,
Wyatt
,
R.
, and
Garner
,
H. R.
,
2001
, “
Hyperspectral Imaging: A Novel Approach for Microscopic Analysis
,”
Cytometry
,
43
(
4
), pp.
239
247
.
12.
Wang
,
X.
,
Cui
,
Y.
, and
Irudayaraj
,
J.
,
2015
, “
Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging
,”
ACS Nano
,
9
(
12
), pp.
11924
11932
.
13.
Conti
,
M.
,
Scanferlato
,
R.
,
Louka
,
M.
,
Sansone
,
A.
,
Marzetti
,
C.
, and
Ferreri
,
C.
,
2016
, “
Building Up Spectral Libraries for Mapping Erythrocytes by Hyperspectral Dark Field Microscopy
,”
Biomed. Spectrosc. Imaging
,
5
(
2
), pp.
175
184
.
14.
More
,
S. S.
, and
Vince
,
R.
,
2015
, “
Hyperspectral Imaging Signatures Detect Amyloidopathy in Alzheimer's Mouse Retina Well Before Onset of Cognitive Decline
,”
ACS Chem. Neurosci.
,
6
(
2
), pp.
306
315
.
15.
Lu
,
G.
, and
Fei
,
B.
,
2014
, “
Medical Hyperspectral Imaging: A Review
,”
J. Biomed. Opt.
,
19
(
1
), p.
010901
.
16.
Vo-Dinh
,
T.
,
2004
, “
A Hyperspectral Imaging System for In Vivo Optical Diagnostics
,”
IEEE Eng. Med. Biol. Mag.
,
23
(
5
), pp.
40
49
.
17.
Li
,
Q.
,
He
,
X.
,
Wang
,
Y.
,
Liu
,
H.
,
Xu
,
D.
, and
Guo
,
F.
,
2013
, “
Review of Spectral Imaging Technology in Biomedical Engineering: Achievements and Challenges
,”
J. Biomed. Opt.
,
18
(
10
), p.
100901
.
18.
Oh
,
E. S.
,
Heo
,
C.
,
Kim
,
J. S.
,
Suh
,
M.
,
Lee
,
Y. H.
, and
Kim
,
J.-M.
,
2013
, “
Hyperspectral Fluorescence Imaging for Cellular Iron Mapping in the In Vitro Model of Parkinson's Disease
,”
J. Biomed. Opt.
,
19
(
5
), p.
051207
.
19.
Verebes
,
G. S.
,
Melchiorre
,
M.
,
Garcia‐Leis
,
A.
,
Ferreri
,
C.
,
Marzetti
,
C.
, and
Torreggiani
,
A.
,
2013
, “
Hyperspectral Enhanced Dark Field Microscopy for Imaging Blood Cells
,”
J. Biophotonics
,
6
(
11–12
), pp.
960
967
.
20.
Vermaas
,
W. F.
,
Timlin
,
J. A.
,
Jones
,
H. D.
,
Sinclair
,
M. B.
,
Nieman
,
L. T.
,
Hamad
,
S. W.
,
Melgaard
,
D. K.
, and
Haaland
,
D. M.
,
2008
, “
In Vivo Hyperspectral Confocal Fluorescence Imaging to Determine Pigment Localization and Distribution in Cyanobacterial Cells
,”
Proc. Natl. Acad. Sci.
,
105
(
10
), pp.
4050
4055
.
21.
Boldrini
,
B.
,
Kessler
,
W.
,
Rebner
,
K.
, and
Kessler
,
R. W.
,
2012
, “
Hyperspectral Imaging: A Review of Best Practice, Performance and Pitfalls for In-Line and On-Line Applications
,”
J. Near Infrared Spectrosc.
,
20
(
5
), pp.
483
508
.
22.
Schnarr
,
K.
,
Mooney
,
R.
,
Weng
,
Y.
,
Zhao
,
D.
,
Garcia
,
E.
,
Armstrong
,
B.
,
Annala
,
A. J.
,
Kim
,
S. U.
,
Aboody
,
K. S.
, and
Berlin
,
J. M.
,
2013
, “
Gold Nanoparticle‐Loaded Neural Stem Cells for Photothermal Ablation of Cancer
,”
Adv. Healthcare Mater.
,
2
(
7
), pp.
976
982
.
23.
Gupta
,
N.
,
2011
, “
Development of Staring Hyperspectral Imagers
,”
IEEE Applied Imagery Pattern Recognition Workshop
(
AIPR
), Washington, DC, Oct. 11–13, pp.
1
8
.
24.
Weitzel
,
L.
,
Krabbe
,
A.
,
Kroker
,
H.
,
Thatte
,
N.
,
Tacconi-Garman
,
L.
,
Cameron
,
M.
, and
Genzel
,
R.
,
1996
, “
3D: The Next Generation Near-Infrared Imaging Spectrometer
,”
Astron. Astrophys. Suppl. Ser.
,
119
(
3
), pp.
531
546
.
25.
Owen
,
D. M.
,
Manning
,
H. B.
,
de Beule
,
P.
,
Talbot
,
C.
,
Requejo-Isidro
,
J.
,
Dunsby
,
C.
,
McGinty
,
J.
,
Benninger
,
R. K.
,
Elson
,
D. S.
, and
Munro
,
I.
,
2007
, “
Development of a Hyperspectral Fluorescence Lifetime Imaging Microscope and Its Application to Tissue Imaging
,”
Proc. SPIE
,
6441
, p. 64411K.
26.
Yudovsky
,
D.
,
Nouvong
,
A.
,
Schomacker
,
K.
, and
Pilon
,
L.
,
2011
, “
Assessing Diabetic Foot Ulcer Development Risk With Hyperspectral Tissue Oximetry
,”
J. Biomed. Opt.
,
16
(
2
), p.
026009
.
27.
Greenman
,
R. L.
,
Panasyuk
,
S.
,
Wang
,
X.
,
Lyons
,
T. E.
,
Dinh
,
T.
,
Longoria
,
L.
,
Giurini
,
J. M.
,
Freeman
,
J.
,
Khaodhiar
,
L.
, and
Veves
,
A.
,
2005
, “
Early Changes in the Skin Microcirculation and Muscle Metabolism of the Diabetic Foot
,”
Lancet
,
366
(
9498
), pp.
1711
1717
.
28.
Shah
,
S.
,
Bachrach
,
N.
,
Spear
,
S.
,
Letbetter
,
D.
,
Stone
,
R.
,
Dhir
,
R.
,
Prichard
,
J.
,
Brown
,
H.
, and
LaFramboise
,
W.
,
2003
, “
Cutaneous Wound Analysis Using Hyperspectral Imaging
,”
Biotechniques
,
34
(
2
), pp.
408
413
.https://www.biotechniques.com/multimedia/archive/00010/03342pf01_10632a.pdf
29.
Afromowitz
,
M. A.
,
Callis
,
J. B.
,
Heimbach
,
D. M.
,
DeSoto
,
L. A.
, and
Norton
,
M. K.
,
1988
, “
Multispectral Imaging of Burn Wounds: A New Clinical Instrument for Evaluating Burn Depth
,”
IEEE Trans. Biomed. Eng.
,
35
(
10
), pp.
842
850
.
30.
Renkoski
,
T. E.
,
Hatch
,
K. D.
, and
Utzinger
,
U.
,
2012
, “
Wide-Field Spectral Imaging of Human Ovary Autofluorescence and Oncologic Diagnosis Via Previously Collected Probe Data
,”
J. Biomed. Opt.
,
17
(
3
), p.
036003
.
31.
Akbari
,
H.
,
Halig
,
L. V.
,
Schuster
,
D. M.
,
Osunkoya
,
A.
,
Master
,
V.
,
Nieh
,
P. T.
,
Chen
,
G. Z.
, and
Fei
,
B.
,
2012
, “
Hyperspectral Imaging and Quantitative Analysis for Prostate Cancer Detection
,”
J. Biomed. Opt.
,
17
(
7
), p.
0760051
.
32.
Akbari
,
H.
,
Uto
,
K.
,
Kosugi
,
Y.
,
Kojima
,
K.
, and
Tanaka
,
N.
,
2011
, “
Cancer Detection Using Infrared Hyperspectral Imaging
,”
Cancer Sci.
,
102
(
4
), pp.
852
857
.
33.
Panasyuk
,
S. V.
,
Yang
,
S.
,
Faller
,
D. V.
,
Ngo
,
D.
,
Lew
,
R. A.
,
Freeman
,
J. E.
, and
Rogers
,
A. E.
,
2007
, “
Medical Hyperspectral Imaging to Facilitate Residual Tumor Identification During Surgery
,”
Cancer Biol. Ther.
,
6
(
3
), pp.
439
446
.
34.
Kong
,
S. G.
,
Martin
,
M.
, and
Vo-Dinh
,
T.
,
2006
, “
Hyperspectral Fluorescence Imaging for Mouse Skin Tumor Detection
,”
Etri J.
,
28
(
6
), pp.
770
776
.
35.
Benavides
,
J. M.
,
Chang
,
S.
,
Park
,
S. Y.
,
Richards-Kortum
,
R.
,
Mackinnon
,
N.
,
MacAulay
,
C.
,
Milbourne
,
A.
,
Malpica
,
A.
, and
Follen
,
M.
,
2003
, “
Multispectral Digital Colposcopy for In Vivo Detection of Cervical Cancer
,”
Opt. Express
,
11
(
10
), pp.
1223
1236
.
36.
Randeberg
,
L. L.
,
Baarstad
,
I.
,
Løke
,
T.
,
Kaspersen
,
P.
, and
Svaasand
,
L. O.
,
2006
, “
Hyperspectral Imaging of Bruised Skin
,”
Proc. SPIE
,
6078
, p.
607800
.
37.
Randeberg
,
L. L.
, and
Hernandez-Palacios
,
J.
,
2012
, “
Hyperspectral Imaging of Bruises in the SWIR Spectral Region
,”
Proc. SPIE
,
8207
, p.
82070N
.
38.
Dicker
,
D. T.
,
Lerner
,
J.
,
Van Belle
,
P.
,
Guerry
,
T.
,
DuPont
,
Herlyn
,
M.
,
Elder
,
D. E.
, and
El-Deiry
,
W. S.
,
2006
, “
Differentiation of Normal Skin and Melanoma Using High Resolution Hyperspectral Imaging
,”
Cancer Biol. Ther.
,
5
(
8
), pp.
1033
1038
.
39.
Li
,
Q.
,
Wang
,
Y.
,
Liu
,
H.
, and
Chen
,
Z.
,
2012
, “
Nerve Fibers Identification Based on Molecular Hyperspectral Imaging Technology
,” IEEE International Conference on Computer Science and Automation Engineering (
CSAE
) Zhangjiajie, China, May 25–27, pp.
15
17
.
40.
Usenik
,
P.
,
Bürmen
,
M.
,
Fidler
,
A.
,
Pernuš
,
F.
, and
Likar
,
B.
,
2012
, “
Evaluation of Cross-Polarized Near Infrared Hyperspectral Imaging for Early Detection of Dental Caries
,”
Proc. SPIE
,
8208
, p.
82080G
.
41.
Martin
,
R.
,
Thies
,
B.
, and
Gerstner
,
A. O.
,
2012
, “
Hyperspectral Hybrid Method Classification for Detecting Altered Mucosa of the Human Larynx
,”
Int. J. Health Geographics
,
11
(
1
), p.
21
.
42.
Larsen
,
E. L.
,
Randeberg
,
L. L.
,
Olstad
,
E.
,
Haugen
,
O. A.
,
Aksnes
,
A.
, and
Svaasand
,
L. O.
,
2011
, “
Hyperspectral Imaging of Atherosclerotic Plaques In Vitro
,”
J. Biomed. Opt.
,
16
(
2
), p. 026011.
43.
Akbari
,
H.
,
Kosugi
,
Y.
,
Kojima
,
K.
, and
Tanaka
,
N.
,
2010
, “
Detection and Analysis of the Intestinal Ischemia Using Visible and Invisible Hyperspectral Imaging
,”
IEEE Trans. Biomed. Eng.
,
57
(
8
), pp.
2011
2017
.
44.
Johnson
,
W. R.
,
Wilson
,
D. W.
,
Fink
,
W.
,
Humayun
,
M.
, and
Bearman
,
G.
,
2007
, “
Snapshot Hyperspectral Imaging in Ophthalmology
,”
J. Biomed. Opt.
,
12
(
1
), p.
014036
.
45.
Sorg
,
B. S.
,
Moeller
,
B. J.
,
Donovan
,
O.
,
Cao
,
Y.
, and
Dewhirst
,
M. W.
,
2005
, “
Hyperspectral Imaging of Hemoglobin Saturation in Tumor Microvasculature and Tumor Hypoxia Development
,”
J. Biomed. Opt.
,
10
(
4
), p.
044004
.
46.
Ferris
,
D. G.
,
Lawhead
,
R. A.
,
Dickman
,
E. D.
,
Holtzapple
,
N.
,
Miller
,
J. A.
,
Grogan
,
S.
,
Bambot
,
S.
,
Agrawal
,
A.
, and
Faupel
,
M. L.
,
2001
, “
Multimodal Hyperspectral Imaging for the Noninvasive Diagnosis of Cervical Neoplasia
,”
J. Lower Genital Tract Dis.
,
5
(
2
), pp.
65
72
.
47.
Roth
,
G. A.
,
Tahiliani
,
S.
,
Neu‐Baker
,
N. M.
, and
Brenner
,
S. A.
,
2015
, “
Hyperspectral Microscopy as an Analytical Tool for Nanomaterials
,”
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
,
7
(
4
), pp.
565
579
.
48.
Seng
,
P.
,
Drancourt
,
M.
,
Gouriet
,
F.
,
La Scola
,
B.
,
Fournier
,
P.-E.
,
Rolain
,
J. M.
, and
Raoult
,
D.
,
2009
, “
Ongoing Revolution in Bacteriology: Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry
,”
Clin. Infect. Dis.
,
49
(
4
), pp.
543
551
.
49.
Vater
,
J.
,
Kablitz
,
B.
,
Wilde
,
C.
,
Franke
,
P.
,
Mehta
,
N.
, and
Cameotra
,
S. S.
,
2002
, “
Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry of Lipopeptide Biosurfactants in Whole Cells and Culture Filtrates of Bacillus Subtilis C-1 Isolated From Petroleum Sludge
,”
Appl. Environ. Microbiol.
,
68
(
12
), pp.
6210
6219
.
50.
Welker
,
M.
, and
Moore
,
E. R.
,
2011
, “
Applications of Whole-Cell Matrix-Assisted Laser-Desorption/Ionization Time-of-Flight Mass Spectrometry in Systematic Microbiology
,”
Syst. Appl. Microbiol.
,
34
(
1
), pp.
2
11
.
51.
Murakoshi
,
M.
,
Iida
,
K.
,
Kumano
,
S.
, and
Wada
,
H.
,
2009
, “
Immune Atomic Force Microscopy of Prestin-Transfected CHO Cells Using Quantum Dots
,”
Pflügers Archiv—Eur. J. Physiol.
,
457
(
4
), p.
885
.
52.
Gartia
,
M. R.
,
Hsiao, A.
,
Sivaguru, M.
,
Chen, Y.
, and
Liu
,
G. L.
, “
Enhanced 3D Fluorescence Live Cell Imaging on Nanoplasmonic Substrate
,”
Nanotechnology
,
22
(
36
), p.
365203
.
53.
Chen
,
J.
, and
Irudayaraj
,
J.
,
2010
, “
Fluorescence Lifetime Cross Correlation Spectroscopy Resolves EGFR and Antagonist Interaction in Live Cells
,”
Anal. Chem.
,
82
(
15
), pp.
6415
6421
.
54.
Schober
,
Y.
,
Guenther
,
S.
,
Spengler
,
B.
, and
Römpp
,
A.
,
2012
, “
Single Cell Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging
,”
Anal. Chem.
,
84
(
15
), pp.
6293
6297
.
55.
Kim
,
A.
, and
Wilson
,
B. C.
,
2010
, “
Measurement of Ex Vivo and In Vivo Tissue Optical Properties: Methods and Theories
,”
Optical-Thermal Response of Laser-Irradiated Tissue
,
Springer
, Dordrecht, The Netherlands, pp.
267
319
.
56.
Sandell
,
J. L.
, and
Zhu
,
T. C.
,
2011
, “
A Review of In‐Vivo Optical Properties of Human Tissues and Its Impact on PDT
,”
J. Biophotonics
,
4
(
11–12
), pp.
773
787
.
57.
Bashkatov
,
A. N.
,
Genina
,
E. A.
, and
Tuchin
,
V. V.
,
2011
, “
Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review
,”
J. Innovative Opt. Health Sci.
,
4
(
1
), pp.
9
38
.
58.
Jacques
,
S. L.
,
2013
, “
Optical Properties of Biological Tissues: A Review
,”
Phys. Med. Biol.
,
58
(
11
), p.
R37
.
59.
Luu
,
Y. K.
,
Capilla
,
E.
,
Rosen
,
C. J.
,
Gilsanz
,
V.
,
Pessin
,
J. E.
,
Judex
,
S.
, and
Rubin
,
C. T.
,
2009
, “
Mechanical Stimulation of Mesenchymal Stem Cell Proliferation and Differentiation Promotes Osteogenesis While Preventing Dietary‐Induced Obesity
,”
J. Bone Miner. Res.
,
24
(
1
), pp.
50
61
.
60.
Palonpon
,
A. F.
,
Ando
,
J.
,
Yamakoshi
,
H.
,
Dodo
,
K.
,
Sodeoka
,
M.
,
Kawata
,
S.
, and
Fujita
,
K.
,
2013
, “
Raman and SERS Microscopy for Molecular Imaging of Live Cells
,”
Nat. Protoc.
,
8
(
4
), pp.
677
692
.
61.
Smus
,
J. P.
,
Moura
,
C. C.
,
McMorrow
,
E.
,
Tare
,
R. S.
,
Oreffo
,
R. O.
, and
Mahajan
,
S.
,
2015
, “
Tracking Adipogenic Differentiation of Skeletal Stem Cells by Label-Free Chemically Selective Imaging
,”
Chem. Sci.
,
6
(
12
), pp.
7089
7096
.
62.
Peterson
,
S. M.
, and
Freeman
,
J. L.
,
2009
, “
RNA Isolation From Embryonic Zebrafish and cDNA Synthesis for Gene Expression Analysis
,”
J. Visualized Exp.
,
30
, p. 1470.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152201/
63.
Iandolino
,
A.
,
Goes da Silva
,
F.
,
Lim
,
H.
,
Choi
,
H.
,
Williams
,
L.
, and
Cook
,
D.
,
2004
, “
High-Quality RNA, cDNA, and Derived Est Libraries From Grapevine (Vitis Vinifera L.)
,”
Plant Mol. Biol. Reporter
,
22
(
3
), pp.
269
278
.
64.
Haaland
,
D. M.
, and
Thomas
,
E. V.
,
1988
, “
Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information
,”
Anal. Chem.
,
60
(
11
), pp.
1193
1202
.
65.
Ruckebusch
,
C.
, and
Blanchet
,
L.
,
2013
, “
Multivariate Curve Resolution: A Review of Advanced and Tailored Applications and Challenges
,”
Anal. Chim. Acta
,
765
, pp.
28
36
.
66.
Wang
,
W.
,
Foley
,
K.
,
Shan
,
X.
,
Wang
,
S.
,
Eaton
,
S.
,
Nagaraj
,
V. J.
,
Wiktor
,
P.
,
Patel
,
U.
, and
Tao
,
N.
,
2011
, “
Single Cells and Intracellular Processes Studied by a Plasmonic-Based Electrochemical Impedance Microscopy
,”
Nat. Chem.
,
3
(
3
), pp.
249
255
.
67.
Wood
,
R. W.
,
1902
, “
On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum
,”
Proc. Phys. Soc. London
,
18
(
1
), p.
269
.
68.
Otto
,
A.
,
1968
, “
Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection
,”
Z. Phys.
,
216
(
4
), pp.
398
410
.
69.
Kretschmann
,
E.
, and
Raether
,
H.
,
1968
, “
Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light
,”
Z. Naturforsch. A
,
23
(
12
), pp.
2135
2136
.
70.
Chu
,
X.
, and
Chu
,
S.-I.
,
2001
, “
Time-Dependent Density-Functional Theory for Molecular Processes in Strong Fields: Study of Multiphoton Processes and Dynamical Response of Individual Valence Electrons of N 2 in Intense Laser Fields
,”
Phys. Rev. A
,
64
(
6
), p.
063404
.
71.
Wang
,
W.
,
Wang
,
S.
,
Liu
,
Q.
,
Wu
,
J.
, and
Tao
,
N.
,
2012
, “
Mapping Single-Cell–Substrate Interactions by Surface Plasmon Resonance Microscopy
,”
Langmuir
,
28
(
37
), pp.
13373
13379
.
72.
Berguiga
,
L.
,
Streppa
,
L.
,
Boyer-Provera
,
E.
,
Martinez-Torres
,
C.
,
Schaeffer
,
L.
,
Elezgaray
,
J.
,
Arneodo
,
A.
, and
Argoul
,
F.
,
2016
, “
Time-Lapse Scanning Surface Plasmon Microscopy of Living Adherent Cells With a Radially Polarized Beam
,”
Appl. Opt.
,
55
(
6
), pp.
1216
1227
.
73.
Homola
,
J.
,
2008
, “
Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species
,”
Chem. Rev.
,
108
(
2
), pp.
462
493
.
74.
Chattopadhyay
,
P. K.
,
Gierahn
,
T. M.
,
Roederer
,
M.
, and
Love
,
J. C.
,
2014
, “
Single-Cell Technologies for Monitoring Immune Systems
,”
Nat. Immunol.
,
15
(
2
), pp.
128
135
.
75.
Laplatine
,
L.
,
Leroy
,
L.
,
Calemczuk
,
R.
,
Baganizi
,
D.
,
Marche
,
P. N.
,
Roupioz
,
Y.
, and
Livache
,
T.
,
2014
, “
Spatial Resolution in Prism-Based Surface Plasmon Resonance Microscopy
,”
Opt. Express
,
22
(
19
), pp.
22771
22785
.
76.
Siddiqi
,
A. M.
,
Li
,
H.
,
Faruque
,
F.
,
Williams
,
W.
,
Lai
,
K.
,
Hughson
,
M.
,
Bigler
,
S.
,
Beach
,
J.
, and
Johnson
,
W.
,
2008
, “
Use of Hyperspectral Imaging to Distinguish Normal, Precancerous, and Cancerous Cells
,”
Cancer Cytopathol.
,
114
(
1
), pp.
13
21
.
77.
Aaron
,
J.
,
Travis
,
K.
,
Harrison
,
N.
, and
Sokolov
,
K.
,
2009
, “
Dynamic Imaging of Molecular Assemblies in Live Cells Based on Nanoparticle Plasmon Resonance Coupling
,”
Nano Lett.
,
9
(
10
), pp.
3612
3618
.
78.
Weinkauf
,
H.
, and
Brehm‐Stecher
,
B. F.
,
2009
, “
Enhanced Dark Field Microscopy for Rapid Artifact‐Free Detection of Nanoparticle Binding to Candida Albicans Cells and Hyphae
,”
Biotechnol. J.
,
4
(
6
), pp.
871
879
.
79.
Patskovsky
,
S.
,
Bergeron
,
E.
,
Rioux
,
D.
, and
Meunier
,
M.
,
2015
, “
Wide‐Field Hyperspectral 3D Imaging of Functionalized Gold Nanoparticles Targeting Cancer Cells by Reflected Light Microscopy
,”
J. Biophotonics
,
8
(
5
), pp.
401
407
.
80.
Ma
,
L. L.
,
Feldman
,
M. D.
,
Tam
,
J. M.
,
Paranjape
,
A. S.
,
Cheruku
,
K. K.
,
Larson
,
T. A.
,
Tam
,
J. O.
,
Ingram
,
D. R.
,
Paramita
,
V.
, and
Villard
,
J. W.
,
2009
, “
Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy
,”
ACS Nano
,
3
(
9
), pp.
2686
2696
.
81.
Goh
,
D.
,
Gong
,
T.
,
Dinish
,
U.
,
Maiti
,
K. K.
,
Fu
,
C. Y.
,
Yong
,
K.-T.
, and
Olivo
,
M.
,
2012
, “
Pluronic Triblock Copolymer Encapsulated Gold Nanorods as Biocompatible Localized Plasmon Resonance-Enhanced Scattering Probes for Dark-Field Imaging of Cancer Cells
,”
Plasmonics
,
7
(
4
), pp.
595
601
.
82.
Gong
,
T.
,
Olivo
,
M.
,
Dinish
,
U.
,
Goh
,
D.
,
Kong
,
K. V.
, and
Yong
,
K.-T.
,
2013
, “
Engineering Bioconjugated Gold Nanospheres and Gold Nanorods as Label-Free Plasmon Scattering Probes for Ultrasensitive Multiplex Dark-Field Imaging of Cancer Cells
,”
J. Biomed. Nanotechnol.
,
9
(
6
), pp.
985
991
.
83.
Mahlein
,
A.-K.
,
Steiner
,
U.
,
Hillnhütter
,
C.
,
Dehne
,
H.-W.
, and
Oerke
,
E.-C.
,
2012
, “
Hyperspectral Imaging for Small-Scale Analysis of Symptoms Caused by Different Sugar Beet Diseases
,”
Plant Methods
,
8
(
1
), p.
3
.
84.
Sotiriou
,
G. A.
,
Starsich
,
F.
,
Dasargyri
,
A.
,
Wurnig
,
M. C.
,
Krumeich
,
F.
,
Boss
,
A.
,
Leroux
,
J. C.
, and
Pratsinis
,
S. E.
,
2014
, “
Photothermal Killing of Cancer Cells by the Controlled Plasmonic Coupling of Silica‐Coated Au/Fe2O3 Nanoaggregates
,”
Adv. Funct. Mater.
,
24
(
19
), pp.
2818
2827
.
85.
Mortimer
,
M.
,
Gogos
,
A.
,
Bartolomé
,
N.
,
Kahru
,
A.
,
Bucheli
,
T. D.
, and
Slaveykova
,
V. I.
,
2014
, “
Potential of Hyperspectral Imaging Microscopy for Semi-Quantitative Analysis of Nanoparticle Uptake by Protozoa
,”
Environ. Sci. Technol.
,
48
(
15
), pp.
8760
8767
.
86.
Vetten
,
M. A.
,
Tlotleng
,
N.
,
Rascher
,
D. T.
,
Skepu
,
A.
,
Keter
,
F. K.
,
Boodhia
,
K.
,
Koekemoer
,
L.-A.
,
Andraos
,
C.
,
Tshikhudo
,
R.
, and
Gulumian
,
M.
,
2013
, “
Label-Free In Vitro Toxicity and Uptake Assessment of Citrate Stabilised Gold Nanoparticles in Three Cell Lines
,”
Part. Fibre Toxicol.
,
10
(
1
), p.
50
.
87.
Lee
,
J. Y.
,
Clarke
,
M. L.
,
Tokumasu
,
F.
,
Lesoine
,
J. F.
,
Allen
,
D. W.
,
Chang
,
R.
,
Litorja
,
M.
, and
Hwang
,
J.
,
2012
, “
Absorption-Based Hyperspectral Imaging and Analysis of Single Erythrocytes
,”
IEEE J. Select. Top. Quantum Electron.
,
18
(
3
), pp.
1130
1139
.
88.
More
,
S. S.
,
Beach
,
J. M.
, and
Vince
,
R.
,
2016
, “
Early Detection of Amyloidopathy in Alzheimer's Mice by Hyperspectral Endoscopy
,”
Invest. Ophthalmol. Visual Sci.
,
57
(
7
), pp.
3231
3238
.
89.
Fu
,
D.
,
Yang
,
W.
, and
Xie
,
X. S.
,
2017
, “
Label-Free Imaging of Neurotransmitter Acetylcholine at Neuromuscular Junctions With Stimulated Raman Scattering
,”
J. Am. Chem. Soc.
,
139
(
2
), pp.
583
586
.
90.
Chaudhari
,
K.
, and
Pradeep
,
T.
,
2014
, “
Spatiotemporal Mapping of Three Dimensional Rotational Dynamics of Single Ultrasmall Gold Nanorods
,”
Sci. Rep.
,
4
, p. 5948.
91.
Mortimer
,
M.
,
Kahru
,
A.
, and
Slaveykova
,
V. I.
,
2014
, “
Uptake, Localization and Clearance of Quantum Dots in Ciliated Protozoa Tetrahymena Thermophila
,”
Environ. Pollut.
,
190
, pp.
58
64
.
92.
Misra
,
S. K.
,
Ostadhossein
,
F.
,
Daza
,
E.
,
Johnson
,
E. V.
, and
Pan
,
D.
,
2016
, “
Hyperspectral Imaging Offers Visual and Quantitative Evidence of Drug Release From Zwitterionic‐Phospholipid‐Nanocarbon When Concurrently Tracked in 3D Intracellular Space
,”
Adv. Funct. Mater.
,
26
(
44
), pp.
8031
8041
.
93.
Gosnell
,
M. E.
,
Anwer
,
A. G.
,
Mahbub
,
S. B.
,
Perinchery
,
S. M.
,
Inglis
,
D. W.
,
Adhikary
,
P. P.
,
Jazayeri
,
J. A.
,
Cahill
,
M. A.
,
Saad
,
S.
, and
Pollock
,
C. A.
,
2016
, “
Quantitative Non-Invasive Cell Characterisation and Discrimination Based on Multispectral Autofluorescence Features
,”
Sci. Reports
,
6
, p. 23453.
94.
Khaodhiar
,
L.
,
Dinh
,
T.
,
Schomacker
,
K. T.
,
Panasyuk
,
S. V.
,
Freeman
,
J. E.
,
Lew
,
R.
,
Vo
,
T.
,
Panasyuk
,
A. A.
,
Lima
,
C.
,
Giurini
,
J. M.
,
Lyons
,
T. E.
, and
Veves
,
A.
, 2007, “
The Use of Medical Hyperspectral Technology to Evaluate Microcirculatory Changes in Diabetic Foot Ulcers and to Predict Clinical Outcomes
,”
Diabetes Care
,
30
(4), pp. 903–910.https://www.ncbi.nlm.nih.gov/pubmed/17303790
95.
Liu
,
L.
, and
Ngadi
,
M. O.
,
2013
, “
Detecting Fertility and Early Embryo Development of Chicken Eggs Using Near-Infrared Hyperspectral Imaging
,”
Food Bioprocess Technol.
,
6
(
9
), pp.
2503
2513
.
96.
Thirumala
,
S.
,
Gimble
,
J. M.
, and
Devireddy
,
R. V.
,
2010
, “
Cryopreservation of Stromal Vascular Fraction of Adipose Tissue in a Serum‐Free Freezing Medium
,”
J. Tissue Eng. Regener. Med.
,
4
(
3
), pp.
224
232
.
97.
Shaik
,
S.
,
Hayes
,
D.
,
Gimble
,
J.
, and
Devireddy
,
R.
,
2017
, “
Inducing Heat Shock Proteins Enhances the Stemness of Frozen-Thawed Adipose Tissue Derived Stem Cells
,”
Stem Cells Dev.
,
26
(
8
), pp.
608
616
.
98.
Manolakis
,
D.
, and
Shaw
,
G.
,
2002
, “
Detection Algorithms for Hyperspectral Imaging Applications
,”
IEEE Signal Process. Mag.
,
19
(
1
), pp.
29
43
.
99.
Segers
,
V. F.
, and
Lee
,
R. T.
,
2008
, “
Stem-Cell Therapy for Cardiac Disease
,”
Nature
,
451
(
7181
), pp.
937
942
.
100.
Langer
,
R.
,
2007
, “
Editorial: Tissue Engineering: Perspectives, Challenges, and Future Directions
,”
Tissue Eng.
,
13
(
1
), pp.
1
2
.
101.
Downes
,
A.
,
Mouras
,
R.
, and
Elfick
,
A.
,
2010
, “
Optical Spectroscopy for Noninvasive Monitoring of Stem Cell Differentiation
,”
BioMed Res. Int.
,
2010
, p. 101864.
You do not currently have access to this content.