The development of bright bisintercalating dyes for deoxyribonucleic acid (DNA) in the 1990s, most notably YOYO-1, revolutionized the field of polymer physics in the ensuing years. These dyes, in conjunction with modern molecular biology techniques, permit the facile observation of polymer dynamics via fluorescence microscopy and thus direct tests of different theories of polymer dynamics. At the same time, they have played a key role in advancing an emerging next-generation method known as genome mapping in nanochannels. The effect of intercalation on the bending energy of DNA as embodied by a change in its statistical segment length (or, alternatively, its persistence length) has been the subject of significant controversy. The precise value of the statistical segment length is critical for the proper interpretation of polymer physics experiments and controls the phenomena underlying the aforementioned genomics technology. In this perspective, we briefly review the model of DNA as a wormlike chain and a trio of methods (light scattering, optical or magnetic tweezers, and atomic force microscopy (AFM)) that have been used to determine the statistical segment length of DNA. We then outline the disagreement in the literature over the role of bisintercalation on the bending energy of DNA, and how a multiscale biomechanical approach could provide an important model for this scientifically and technologically relevant problem.

References

References
1.
Fetters
,
L.
,
Lohse
,
D.
,
Richter
,
T.
,
Witten
,
T.
, and
Zirkelt
,
A.
,
1994
, “
Connection Between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties
,”
Macromolecules
,
27
(
17
), pp.
4639
4647
.
2.
Tree
,
D. R.
,
Muralidhar
,
A.
,
Doyle
,
P. S.
, and
Dorfman
,
K. D.
,
2013
, “
Is DNA a Good Model Polymer?
,”
Macromolecules
,
46
(
20
), pp.
8369
8382
.
3.
Rye
,
H. S.
,
Yue
,
S.
,
Wemmer
,
D. E.
,
Quesada
,
M. A.
,
Haugland
,
R. P.
,
Mathies
,
R. A.
, and
Giazer
,
A. N.
,
1992
, “
Stable Fluorescent Complexes of Double-Stranded DNA With Bis-Intercalating Asymmetric Cyanine Dyes: Properties and Applications
,”
Nucleic Acids Res.
,
20
(
11
), pp.
2803
2812
.
4.
Perkins
,
T. T.
,
Smith
,
D. E.
, and
Chu
,
S.
,
1997
, “
Single Polymer Dynamics in an Elongational Flow
,”
Science
,
276
(
5321
), pp.
2016
2021
.
5.
Quake
,
S. R.
,
Babcock
,
H. P.
, and
Chu
,
S.
,
1997
, “
The Dynamics of Partially Extended Single Molecules of DNA
,”
Nature
,
388
(
6638
), pp.
151
154
.
6.
Sischka
,
A.
,
Toensing
,
K.
,
Eckel
,
R.
,
Wilking
,
S. D.
,
Sewald
,
N.
,
Ros
,
R.
, and
Anselmetti
,
D.
,
2005
, “
Molecular Mechanisms and Kinetics Between DNA and DNA Binding Ligands
,”
Biophys. J.
,
88
(
1
), pp.
404
411
.
7.
Murade
,
C. U.
,
Subramaniam
,
V.
,
Otto
,
C.
, and
Bennink
,
M. L.
,
2010
, “
Force Spectroscopy and Fluorescence Microscopy of dsDNA-YOYO-1 Complexes: Implications for the Structure of dsDNA in the Overstretching Region
,”
Nucleic Acids Res.
,
38
(
10
), pp.
3423
3431
.
8.
Günther
,
K.
,
Mertig
,
M.
, and
Seidel
,
R.
,
2010
, “
Mechanical and Structural Properties of YOYO-1 Complexed DNA
,”
Nucleic Acids Res.
,
38
(
19
), pp.
6526
6532
.
9.
Reuter
,
M.
, and
Dryden
,
D. T. F.
,
2010
, “
The Kinetics of YOYO-1 Intercalation Into Single Molecules of Double-Stranded DNA
,”
Biochem. Biophys. Res. Commun.
,
403
(
2
), pp.
225
229
.
10.
Maaloum
,
M.
,
Muller
,
P.
, and
Harlepp
,
S.
,
2013
, “
DNA-Intercalators Interactions: Structural and Physical Analysis Using Atomic Force Microscopy in Solution
,”
Soft Matter
,
9
(
47
), pp.
11233
11240
.
11.
Kundukad
,
B.
,
Yan
,
J.
, and
Doyle
,
P. S.
,
2014
, “
Effect of YOYO-1 on the Mechanical Properties of DNA
,”
Soft Matter
,
10
(
48
), pp.
9721
9728
.
12.
Perkins
,
T. T.
,
Smith
,
D. E.
, and
Chu
,
S.
,
1994
, “
Direct Observation of Tube-Like Motion of a Single Polymer Chain
,”
Science
,
264
(
5160
), pp.
819
822
.
13.
Smith
,
D. E.
,
Perkins
,
T. T.
, and
Chu
,
S.
,
1995
, “
Self-Diffusion of an Entangled DNA Molecule by Reptation
,”
Phys. Rev. Lett.
,
75
(
22
), pp.
4146
4149
.
14.
Wirtz
,
D.
,
1995
, “
Direct Measurement of the Transport Properties of a Single DNA Molecule
,”
Phys. Rev. Lett.
,
75
(
12
), pp.
2436
2439
.
15.
Hemminger
,
O. L.
,
Boukany
,
P. E.
,
Wang
,
S. Q.
, and
Lee
,
L. J.
,
2010
, “
Flow Pattern and Molecular Visualization of DNA Solutions Through a 4:1 Planar Micro-Contraction
,”
J. Non-Newtonian Fluid Mech.
,
165
(
23–24
), pp.
1613
1624
.
16.
Teixeira
,
R. E.
,
Dambal
,
A. K.
,
Richter
,
D. H.
,
Shaqfeh
,
E. S. G.
, and
Chu
,
S.
,
2007
, “
The Individualistic Dynamics of Entangled DNA in Solution
,”
Macromolecules
,
40
(
7
), pp.
2461
2476
.
17.
Mai
,
D. J.
,
Brockman
,
C.
, and
Schroeder
,
C. M.
,
2012
, “
Microfluidic Systems for Single DNA Dynamics
,”
Soft Matter
,
8
(
41
), pp.
10560
10572
.
18.
Bird
,
R. B.
,
Hassager
,
O.
,
Armstrong
,
R. A.
, and
Curtiss
,
C. F.
,
1977
,
Dynamics of Polymeric Liquids
(Kinetic Theory), Vol.
2
,
Wiley
,
New York
.
19.
Doi
,
M.
, and
Edwards
,
S. F.
,
1986
,
The Theory of Polymer Dynamics
,
Oxford University Press
,
Oxford, UK
.
20.
Brockman
,
C.
,
Kim
,
S. J.
, and
Schroeder
,
C. M.
,
2011
, “
Direct Observation of Single Flexible Polymers Using Single Stranded DNA
,”
Soft Matter
,
7
(
18
), pp.
8005
8012
.
21.
Mai
,
D. J.
,
Marciel
,
A. B.
,
Sing
,
C. E.
, and
Schroeder
,
C. M.
,
2015
, “
Topology-Controlled Relaxation Dynamics of Single Branched Polymers
,”
ACS Macro Lett.
,
4
(
4
), pp.
446
452
.
22.
Lam
,
E. T.
,
Hastie
,
A.
,
Lin
,
C.
,
Ehrlich
,
D.
,
Das
,
S. K.
,
Austin
,
M. D.
,
Deshpande
,
P.
,
Cao
,
H.
,
Nagarajan
,
N.
,
Xiao
,
M.
, and
Kwok
,
P. Y.
,
2012
, “
Genome Mapping on Nanochannel Arrays for Structural Variation Analysis and Sequence Assembly
,”
Nat. Biotechnol.
,
30
(
8
), pp.
771
776
.
23.
Jo
,
K.
,
Dhingra
,
D. M.
,
Odijk
,
T.
,
de Pablo
,
J. J.
,
Graham
,
M. D.
,
Runnheim
,
R.
,
Forrest
,
D.
, and
Schwartz
,
D. C.
,
2007
, “
A Single-Molecule Barcoding System Using Nanoslits for DNA Analysis
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
8
), pp.
2673
2678
.
24.
Pendleton
,
M.
,
Sebra
,
R.
,
Pang
,
A. W. C.
,
Ummat
,
A.
,
Franzen
,
O.
,
Rausch
,
T.
,
Stütz
,
A. M.
,
Stedman
,
W.
,
Anantharaman
,
T.
,
Hastie
,
A.
,
Dai
,
H.
,
Fritz
,
M. H.-Y.
,
Cao
,
H.
,
Cohain
,
A.
,
Deikus
,
G.
,
Durrett
,
R. E.
,
Blanchard
,
S. C.
,
Altman
,
R.
,
Chin
,
C.-S.
,
Guo
,
Y.
,
Paxinos
,
E. E.
,
Korbel
,
J. O.
,
Darnell
,
R. B.
,
McCombie
,
W. R.
,
Kwok
,
P.-Y.
,
Mason
,
C. E.
,
Schadt
,
E. E.
, and
Bashir
,
A.
,
2015
, “
Assembly and Diploid Architecture of an Individual Human Genome Via Single-Molecule Technologies
,”
Nat. Methods
,
12
(
8
), pp.
780
786
.
25.
Seo
,
J.
,
Rhie
,
A.
,
Kim
,
J.
,
Lee
,
S.
,
Sohn
,
M.
,
Kim
,
C.
,
Hastie
,
A.
,
Cao
,
H.
,
Yun
,
J.
,
Kim
,
J.
,
Kuk
,
J.
,
Park
,
G. H.
,
Kim
,
J.
,
Ryu
,
H.
,
Kim
,
J.
,
Roh
,
M.
,
Baek
,
J.
,
Hunkapiller
,
M. W.
,
Korlach
,
J.
,
Shin
,
J.
, and
Kim
,
C.
,
2016
, “
De Novo Assembly and Phasing of a Korean Human Genome
,”
Nature
,
538
(
7624
), pp.
243
247
.
26.
Cao
,
H.
,
Hastie
,
A. R.
,
Cao
,
D.
,
Lam
,
E. T.
,
Sun
,
Y.
,
Huang
,
H.
,
Liu
,
X.
,
Lin
,
L.
,
Andrews
,
W.
,
Chan
,
S.
,
Huang
,
S.
,
Tong
,
X.
,
Requa
,
M.
,
Anantharaman
,
T.
,
Krogh
,
A.
,
Yang
,
H.
,
Cao
,
H.
, and
Xu
,
X.
,
2014
, “
Rapid Detection of Structural Variation in a Human Genome Using Nanochannel-Based Genome Mapping Technology
,”
Gigascience
,
3
(
1
), pp.
1
11
.
27.
Feuk
,
L.
,
Carson
,
A.
, and
Scherer
,
S.
,
2006
, “
Structural Variation in the Human Genome
,”
Nat. Rev. Genet.
,
7
(
2
), pp.
85
97
.
28.
Dorfman
,
K. D.
,
Gupta
,
D.
,
Jain
,
A.
,
Muralidhar
,
A.
, and
Tree
,
D. R.
,
2014
, “
Hydrodynamics of DNA Confined in Nanoslits and Nanochannels
,”
Eur. Phys. J. Spec. Top.
,
223
(
14
), pp.
3179
3200
.
29.
Odijk
,
T.
,
2008
, “
Scaling Theory of DNA Confined in Nanochannels and Nanoslits
,”
Phys. Rev. E
,
77
(
6
), p.
060901(R)
.
30.
Wang
,
Y.
,
Tree
,
D. R.
, and
Dorfman
,
K. D.
,
2011
, “
Simulation of DNA Extension in Nanochannels
,”
Macromolecules
,
44
(
16
), pp.
6594
6604
.
31.
Tree
,
D. R.
,
Wang
,
Y.
, and
Dorfman
,
K. D.
,
2013
, “
Modeling the Relaxation Time of DNA Confined in a Nanochannel
,”
Biomicrofluidics
,
7
(
5
), p.
054118
.
32.
Muralidhar
,
A.
,
Tree
,
D. R.
, and
Dorfman
,
K. D.
,
2014
, “
Backfolding of Wormlike Chains Confined in Nanochannels
,”
Macromolecules
,
47
(
23
), pp.
8446
8458
.
33.
Odijk
,
T.
,
2006
, “
DNA Confined in Nanochannels: Hairpin Tightening by Entropic Depletion
,”
J. Chem. Phys.
,
125
(
20
), p.
204904
.
34.
Muralidhar
,
A.
, and
Dorfman
,
K. D.
,
2016
, “
Backfolding of DNA Confined in Nanotubes: Flory Theory Versus the Two-State Cooperativity Model
,”
Macromolecules
,
49
(
3
), pp.
1120
1126
.
35.
Muralidhar
,
A.
,
Quevillon
,
M.
, and
Dorfman
,
K. D.
,
2016
, “
The Backfolded Odijk Regime for Wormlike Chains Confined in Rectangular Nanochannels
,”
Polymers
,
8
(
3
), p.
79
.
36.
Chen
,
J. Z. Y.
,
2017
, “
Conformational Properties of a Back-Folding Wormlike Chain Confined in a Cylindrical Tube
,”
Phys. Rev. Lett.
,
118
(
24
), p.
247802
.
37.
Das
,
S. K.
,
Austin
,
M. D.
,
Akana
,
M. C.
,
Deshpande
,
P.
,
Cao
,
H.
, and
Xiao
,
M.
,
2010
, “
Single Molecule Linear Analysis of DNA in Nano-Channel Labeled With Sequence Specific Fluorescent Probes
,”
Nucleic Acids Res.
,
38
(
18
), p.
e177
.
38.
Gupta
,
D.
,
Sheats
,
J.
,
Muralidhar
,
A.
,
Miller
,
J. J.
,
Huang
,
D. E.
,
Mahshid
,
S.
,
Dorfman
,
K. D.
, and
Reisner
,
W.
,
2014
, “
Mixed Confinement Regimes During Equilibrium Confinement Spectroscopy of DNA
,”
J. Chem. Phys.
,
140
(
21
), p.
214901
.
39.
Gupta
,
D.
,
Miller
,
J. J.
,
Muralidhar
,
A.
,
Mahshid
,
S.
,
Reisner
,
W.
, and
Dorfman
,
K. D.
,
2015
, “
Experimental Evidence of Weak Excluded Volume Effects for Nanochannel Confined DNA
,”
ACS Macro Lett.
,
4
(
7
), pp.
759
763
.
40.
Iarko
,
V.
,
Werner
,
E.
,
Nyberg
,
L. K.
,
Müller
,
V.
,
Fritzsche
,
J.
,
Ambjörnsson
,
T.
,
Beech
,
J. P.
,
Tegenfeldt
,
J. O.
,
Mehlig
,
K.
,
Westerlund
,
F.
, and
Mehlig
,
B.
,
2015
, “
Extension of Nanoconfined DNA: Quantitative Comparison Between Experiment and Theory
,”
Phys. Rev. E
,
92
(
6
), p.
062701
.
41.
Marko
,
J. F.
, and
Siggia
,
E. D.
,
1995
, “
Stretching DNA
,”
Macromolecules
,
28
(
26
), pp.
8759
8770
.
42.
Kratky
,
O.
, and
Porod
,
G.
,
1949
, “
Röntgenuntersuchung Gels¨ter Fadenmolekl¨e
,”
Rec. Trav. Chim.
,
68
(
12
), pp.
1106
1123
.
43.
Hiemenz
,
P. C.
, and
Lodge
,
T. P.
,
2007
,
Polymer Chemistry
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
44.
Rouse
,
P. E.
,
1953
, “
A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers
,”
J. Chem. Phys.
,
21
(
7
), pp.
1272
1280
.
45.
Zimm
,
B. H.
,
1956
, “
Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss
,”
J. Chem. Phys.
,
24
(
2
), pp.
269
278
.
46.
Kirkwood
,
J. G.
, and
Riseman
,
J.
,
1948
, “
The Intrinsic Viscosities and Diffusion Constants of Flexible Macromolecules in Solution
,”
J. Chem. Phys.
,
16
(
6
), pp.
565
573
.
47.
Zimm
,
B. H.
,
1980
, “
Chain Molecule Hydrodynamics by the Monte-Carlo Method and the Validity of the Kirkwood-Riseman Approximation
,”
Macromolecules
,
13
(
3
), pp.
592
602
.
48.
Muralidhar
,
A.
, and
Dorfman
,
K. D.
,
2015
, “
Kirkwood Diffusivity of Long Semiflexible Chains in Nanochannel Confinement
,”
Macromolecules
,
48
(
8
), pp.
2829
2839
.
49.
Viovy
,
J. L.
,
2000
, “
Electrophoresis of DNA and Other Polyelectrolytes: Physical Mechanisms
,”
Rev. Mod. Phys.
,
72
(
3
), pp.
813
872
.
50.
Manning
,
G. S.
,
1978
, “
The Molecular Theory of Polyelectrolyte Solutions With Applications to the Electrostatic Properties of Polynucleotides
,”
Q. Rev. Biophys.
,
11
(
2
), pp.
179
246
.
51.
Baumann
,
C. G.
,
Smith
,
S. B.
,
Bloomfield
,
V. A.
, and
Bustamante
,
C.
,
1997
, “
Ionic Effects on the Elasticity of Single DNA Molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
,
94
(
12
), pp.
6185
6190
.
52.
Godfrey
,
J. E.
,
1976
, “
The Flexibility of Low Molecular Weight Double-Stranded DNA as a Function of Length—I: Isolation and Physical Characterization of Seven Fractions
,”
Biophys. Chem.
,
5
(
3
), pp.
285
299
.
53.
Godfrey
,
J. E.
, and
Eisenberg
,
H.
,
1976
, “
The Flexibility of Low Molecular Weight Double-Stranded DNA as a Function of Length—II: Light Scattering Measurements and the Estimation of Persistence Lengths From Light Scattering, Sedimentation and Viscosity
,”
Biophys. Chem.
,
5
(
3
), pp.
301
318
.
54.
Jolly
,
D.
, and
Eisenberg
,
H.
,
1976
, “
Photon Correlation Spectroscopy, Total Intensity Light Scattering With Laser Radiation, and Hydrodynamic Studies of a Well Fractionated DNA Sample
,”
Biopolymers
,
15
(
1
), pp.
61
95
.
55.
Kam
,
Z.
,
Borochov
,
N.
, and
Eisenberg
,
H.
,
1981
, “
Dependence of Laser Light Scattering of DNA on NaCl Concentration
,”
Biopolymers
,
20
(
12
), pp.
2671
2690
.
56.
Schmid
,
C. W.
,
Rinehart
,
F. P.
, and
Hearst
,
J. E.
,
1971
, “
Statistical Length of DNA From Light Scattering
,”
Biopolymers
,
10
(
5
), pp.
883
893
.
57.
Gray
,
H. B.
, Jr.
, and
Hearst
,
J. E.
,
1968
, “
Flexibility of Native DNA From the Sedimentation Behavior as a Function of Molecular Weight and Temperature
,”
J. Mol. Biol.
,
35
(
1
), pp.
111
129
.
58.
Harpst
,
J. A.
, and
Dawson
,
J. R.
,
1989
, “
Low Angle Light Scattering Studies on Whole, Half, and Quarter Molecules of T2 Bacteriophage DNA
,”
Biophys. J.
,
55
(
6
), pp.
1237
1249
.
59.
Allison
,
S.
,
Sorlie
,
S. S.
, and
Pecora
,
R.
,
1990
, “
Brownian Dynamics Simulations of Wormlike Chains: Dynamic Light Scattering From a 2311 Base Pair DNA Fragment
,”
Macromolecules
,
23
(
4
), pp.
1110
1118
.
60.
Sorlie
,
S. S.
, and
Pecora
,
R.
,
1988
, “
A Dynamic Light Scattering Study of a 2311 Base Pair DNA Restriction Fragment
,”
Macromolecules
,
21
(
5
), pp.
1437
1449
.
61.
Seils
,
J.
, and
Dorfmüller
,
T.
,
1991
, “
Internal Dynamics of Linear and Superhelical DNA as Studied by Photon Correlation Spectroscopy
,”
Biopolymers
,
31
(
7
), pp.
813
825
.
62.
Voordouw
,
G.
,
Kam
,
Z.
,
Borochov
,
N.
, and
Eisenberg
,
H.
,
1978
, “
Isolation and Physical Studies of the Intact Supercoiled: The Open Circular and the Linear Forms of CoIE1-Plasmid DNA
,”
Biophys. Chem.
,
8
(
2
), pp.
171
189
.
63.
Lederer
,
H.
,
May
,
R. P.
,
Kjems
,
J. K.
,
Baer
,
G.
, and
Heumann
,
H.
,
1986
, “
Solution Structure of a Short DNA Fragment Studied by Neutron Scattering
,”
Eur. J. Biochem.
,
161
(
1
), pp.
191
196
.
64.
Moffitt
,
J. R.
,
Chemla
,
Y. R.
,
Smith
,
S. B.
, and
Bustamante
,
C.
,
2008
, “
Recent Advances in Optical Tweezers
,”
Annu. Rev. Biochem.
,
77
(
1
), pp.
205
228
.
65.
Strick
,
T.
,
Allemand
,
J. F.
,
Croquette
,
V.
, and
Bensimon
,
D.
,
2000
, “
Twisting and Stretching Single DNA Molecules
,”
Prog. Biophys. Mol. Biol.
,
74
(
1–2
), pp.
115
140
.
66.
Li
,
X.
,
Schroeder
,
C. M.
, and
Dorfman
,
K. D.
,
2015
, “
Modeling the Stretching of Wormlike Chains in the Presence of Excluded Volume
,”
Soft Matter
,
11
(
29
), pp.
5947
5954
.
67.
Bustamante
,
C.
,
Marko
,
J. F.
,
Siggia
,
E. D.
, and
Smith
,
S.
,
1994
, “
Entropic Elasticity of λ-Phage DNA
,”
Science
,
265
(
5178
), pp.
1599
1600
.
68.
Assi
,
F.
,
Jenks
,
R.
,
Yang
,
J.
,
Love
,
C.
, and
Prentiss
,
M.
,
2002
, “
Massively Parallel Adhesion and Reactivity Measurements Using Simple and Inexpensive Magnetic Tweezers
,”
J. Appl. Phys.
,
92
(
9
), pp.
5584
5586
.
69.
Segall
,
D. E.
,
Nelson
,
P. C.
, and
Phillips
,
R.
,
2006
, “
Volume-Exclusion Effects in Tethered Particle Experiments: Bead Size Matters
,”
Phys. Rev. Lett.
,
96
(
8
), p.
088306
.
70.
Rivetti
,
C.
,
Guthold
,
M.
, and
Bustamante
,
C.
,
1996
, “
Scanning Force Microscopy of DNA Deposited Onto Mica: Equilibration Versus Kinetic Trapping Studied by Statistical Polymer Chain Analysis
,”
J. Mol. Biol.
,
264
(
5
), pp.
919
932
.
71.
Hansma
,
H. G.
,
Revenko
,
I.
,
Kim
,
K.
, and
Laney
,
D. E.
,
1996
, “
Atomic Force Microscopy of Long and Short Double-Stranded, Single-Stranded and Triple-Stranded Nucleic Acids
,”
Nucleic Acids Res.
,
24
(
4
), pp.
713
720
.
72.
Mantelli
,
S.
,
Muller
,
P.
,
Harlepp
,
S.
, and
Maaloum
,
M.
,
2011
, “
Conformational Analysis and Estimation of the Persistence Length of DNA Using Atomic Force Microscopy in Solution
,”
Soft Matter
,
7
(
7
), pp.
3412
3416
.
73.
Hogan
,
M.
,
LeGrange
,
J.
, and
Austin
,
B.
,
1983
, “
Dependence of DNA Helix Flexibility on Base Composition
,”
Nature
,
304
(
5928
), pp.
752
754
.
74.
Geggier
,
S.
, and
Vologodskii
,
A.
,
2010
, “
Sequence Dependence of DNA Bending Rigidity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
35
), pp.
15421
15426
.
75.
Freeman
,
G. S.
,
Hinckley
,
D. M.
,
Lequieu
,
J. P.
,
Whitmer
,
J. K.
, and
de Pablo
,
J. J.
,
2014
, “
Coarse-Grained Modeling of DNA Curvature
,”
J. Chem. Phys.
,
141
(
16
), p.
165103
.
76.
Daoud
,
M.
, and
De Gennes
,
P.
,
1977
, “
Statistics of Macromolecular Solutions Trapped in Small Pores
,”
J. Phys.
,
38
(
1
), pp.
85
93
.
77.
Odijk
,
T.
,
1983
, “
On the Statistics and Dynamics of Confined or Entangled Stiff Polymers
,”
Macromolecules
,
16
(
3
), pp.
1340
1344
.
78.
Tree
,
D. R.
,
Wang
,
Y.
, and
Dorfman
,
K. D.
,
2013
, “
Extension of DNA in a Nanochannel as a Rod-to-Coil Transition
,”
Phys. Rev. Lett.
,
110
(
20
), p.
208103
.
79.
Dobrynin
,
A. V.
,
2005
, “
Electrostatic Persistence Length of Semiflexible and Flexible Polyelectrolytes
,”
Macromolecules
,
38
(
22
), pp.
9304
9314
.
80.
Reisner
,
W.
,
Pedersen
,
J. N.
, and
Austin
,
R. H.
,
2012
, “
DNA Confinement in Nanochannels: Physics and Biological Applications
,”
Rep. Prog. Phys.
,
75
(
10
), p.
106601
.
81.
Cheong
,
G. K.
,
Li
,
X.
, and
Dorfman
,
K. D.
,
2017
, “
Wall Depletion Length of a Channel-Confined Polymer
,”
Phys. Rev. E
,
95
(
2
), p.
022501
.
82.
Werner
,
E.
, and
Mehlig
,
B.
,
2015
, “
Scaling Regimes of a Semiflexible Polymer in a Rectangular Channel
,”
Phys. Rev. E
,
91
(
5
), p.
050601
.
83.
Reis
,
L. A.
,
Ramos
,
E. B.
, and
Rocha
,
M. S.
,
2013
, “
DNA Interaction With Diaminobenzidine Studied With Optical Tweezers and Dynamic Light Scattering
,”
J. Phys. Chem. B
,
117
(
46
), pp.
14345
14350
.
84.
Knotts
, IV,
T. A.
,
Rathore
,
N.
,
Schwartz
,
D. C.
, and
de Pablo
,
J. J.
,
2007
, “
A Coarse Grain Model for DNA
,”
J. Chem. Phys.
,
126
(
8
), p.
084901
.
85.
Hinckley
,
D. M.
,
Freeman
,
G. S.
,
Whitmer
,
J. K.
, and
de Pablo
,
J. J.
,
2013
, “
An Experimentally-Informed Coarse-Grained 3-Site-Per-Nucleotide Model of DNA: Structure, Thermodynamics, and Dynamics of Hybridization
,”
J. Chem. Phys.
,
139
(
14
), p.
144903
.
86.
DeMille
,
R. C.
,
Cheatham
, III,
T. E.
, and
Molinero
,
V.
,
2011
, “
A Coarse-Grained Model of DNA With Explicit Solvation by Water and Ions
,”
J. Phys. Chem. B
,
115
(
1
), pp.
132
142
.
87.
Freeman
,
G. S.
,
Hinckley
,
D. M.
, and
de Pablo
,
J. J.
,
2011
, “
A Coarse-Grain Three-Site-per-Nucleotide Model for DNA With Explicit Ions
,”
J. Chem. Phys.
,
135
(
16
), p.
165104
.
You do not currently have access to this content.