Application of tibiofemoral compression force (TCF) has been shown to produce anterior cruciate ligament (ACL) injuries in a laboratory setting. A new robotic testing methodology was utilized to predict ACL forces generated by TCF without directly loading the ligament. We hypothesized that ACL force, directly recorded by a miniature load cell during an unconstrained test, could be predicted by measurements of anterior tibial restraining force (ARF) recorded during a constrained test. The knee was first flexed under load control with 25 N TCF (tibial displacements and rotations unconstrained) to record a baseline kinematic pathway. Tests were repeated with increasing levels of TCF, while recording ACL force and knee kinematics. Then tests with increasing TCF were performed under displacement control to reproduce the baseline kinematic pathway (tibia constrained), while recording ARF. This allowed testing to 1500 N TCF since the ACL was not loaded. TCF generated ACL force for all knees (n = 10) at 50 deg flexion, and for eight knees at 30 deg flexion (unconstrained test). ACL force (unconstrained test) and ARF (constrained test) had strong linear correlations with TCF at both flexion angles (R2 from 0.85 to 0.99), and ACL force was strongly correlated with ARF at both flexion angles (R2 from 0.76 to 0.99). Under 500 N TCF, the mean error between ACL force prediction from ARF regression and measured ACL force was 4.8±7.3 N at 30 deg and 8.8±27.5 N at 50 deg flexion. Our hypothesis was confirmed for TCF levels up to 500 N, and ARF had a strong linear correlation with TCF up to 1500 N TCF.

References

References
1.
Meyer
,
E. G.
,
Baumer
,
T. G.
,
Slade
,
J. M.
,
Smith
,
W. E.
, and
Haut
,
R. C.
,
2008
, “
Tibiofemoral Contact Pressures and Osteochondral Microtrauma During Anterior Cruciate Ligament Rupture Due to Excessive Compressive Loading and Internal Torque of the Human Knee
,”
Am. J. Sports Med.
,
36
(
10
), pp.
1966
1977
.
2.
Meyer
,
E. G.
, and
Haut
,
R. C.
,
2008
, “
Anterior Cruciate Ligament Injury Induced by Internal Tibial Torsion or Tibiofemoral Compression
,”
J. Biomech.
,
41
(
16
), pp.
3377
3383
.
3.
Oh
,
Y. K.
,
Kreinbrink
,
J. L.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2012
, “
Effect of Axial Tibial Torque Direction on ACL Relative Strain and Strain Rate in an In Vitro Simulated Pivot Landing
,”
J. Orthop. Res.
,
30
(
4
), pp.
528
534
.
4.
Boden
,
B. P.
,
Dean
,
G. S.
,
Feagin
,
J. A.
, Jr.
, and
Garrett
,
W. E.
, Jr.
,
2000
, “
Mechanisms of Anterior Cruciate Ligament Injury
,”
Orthopedics
,
23
(
6
), pp.
573
578
.
5.
Ford
,
K. R.
,
Myer
,
G. D.
, and
Hewett
,
T. E.
,
2003
, “
Valgus Knee Motion During Landing in High School Female and Male Basketball Players
,”
Med. Sci. Sports Exercise
,
35
(
10
), pp.
1745
1750
.
6.
Fukuda
,
Y.
,
Woo
,
S. L.
,
Tsuda
,
E.
,
Tang
,
P.
,
McMahon
,
P.
, and
Debski
,
R.
,
2003
, “
A Quantitative Analysis of Valgus Torque on the ACL: A Human Cadaveric Study
,”
J. Orthop. Res.
,
21
(
6
), pp.
1107
1112
.
7.
Hewett
,
T. E.
,
Myer
,
G. D.
,
Ford
,
K. R.
,
Heidt
,
R. S.
,
Colosimo
,
A. J.
,
McLean
,
S. G.
,
Van Den Bogert
,
A. J.
,
Paterno
,
M. V.
, and
Succop
,
P.
,
2005
, “
Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study
,”
Am. J. Sports Med.
,
33
(
4
), pp.
492
501
.
8.
Koga
,
H.
,
Nakamae
,
A.
,
Shima
,
Y.
,
Iwasa
,
J.
,
Myklebust
,
G.
,
Engebretsen
,
L.
,
Bahr
,
R.
, and
Krosshaug
,
T.
,
2010
, “
Mechanisms for Noncontact Anterior Cruciate Ligament Injuries: Knee Joint Kinematics in 10 Injury Situations From Female Team Handball and Basketball
,”
Am. J. Sports Med.
,
38
(
11
), pp.
2218
2225
.
9.
DeMorat
,
G.
,
Weinhold
,
P.
,
Blackburn
,
T.
,
Chudik
,
S.
, and
Garrett
,
W.
,
2004
, “
Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury
,”
Am. J. Sports Med.
,
32
(
2
), pp.
477
483
.
10.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Nichols
,
C. E.
,
Johnson
,
R. J.
, and
Pope
,
M. H.
,
1993
, “
An In Vivo Comparison of Anterior Tibial Translation and Strain in the Anteromedial Band of the Anterior Cruciate Ligament
,”
J. Biomech.
,
26
(
1
), pp.
51
58
.
11.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Shepard
,
M .F.
,
Finerman
,
G. A. M.
, and
Slauterbeck
,
J. L.
,
1995
, “
Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces
,”
J. Orthop. Res.
,
13
(
6
), pp.
930
935
.
12.
Markolf
,
K. L.
,
O'Neill
,
G.
,
Jackson
,
S. R.
, and
McAllister
,
D. R.
,
2004
, “
Effects of Applied Quadriceps and Hamstrings Muscle Loads on Forces in the Anterior and Posterior Cruciate Ligaments
,”
Am. J. Sports Med.
,
32
(
5
), pp.
1144
1149
.
13.
McLean
,
S. G.
,
Oh
,
Y. K.
,
Palmer
,
M. L.
,
Lucey
,
S. M.
,
Lucarelli
,
D. G.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2011
, “
The Relationship Between Anterior Tibial Acceleration, Tibial Slope, and ACL Strain During a Simulated Jump Landing Task
,”
J. Bone Jt. Surg. Am.
,
93
(
14
), pp.
1310
1317
.
14.
Brandon
,
M. L.
,
Haynes
,
P. T.
,
Bonamo
,
J. R.
,
Flynn
,
M. I.
,
Barrett
,
G. R.
, and
Sherman
,
M. F.
,
2006
, “
The Association Between Posterior-Inferior Tibial Slope and Anterior Cruciate Ligament Insufficiency
,”
Arthroscopy
,
22
(
8
), pp.
894
899
.
15.
Hashemi
,
J.
,
Chandrashekar
,
N.
,
Mansouri
,
H.
,
Gill
,
B.
,
Slauterbeck
,
J. R.
,
Schutt
,
R. C.
, Jr.
,
Dabezies
,
E.
, and
Beynnon
,
B. D.
,
2010
, “
Shallow Medial Tibial Plateau and Steep Medial and Lateral Tibial Slopes: New Risk Factors for Anterior Cruciate Ligament Injuries
,”
Am. J. Sports Med.
,
38
(
1
), pp.
54
62
.
16.
Kostogiannis
,
I.
,
Swärd
,
P.
,
Neuman
,
P.
,
Fridén
,
T.
, and
Roos
,
H.
,
2011
, “
The Influence of Posterior-Inferior Tibial Slope in ACL Injury
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
19
(
4
), pp.
592
597
.
17.
Lipps
,
D. B.
,
Oh
,
Y. K.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2012
, “
Morphologic Characteristics Help Explain the Gender Difference in Peak Anterior Cruciate Ligament Strain During a Simulated Pivot Landing
,”
Am. J. Sports Med.
,
40
(
1
), pp.
32
40
.
18.
Todd
,
M. S.
,
Lalliss
,
S.
,
Garcia
,
E.
,
DeBerardino
,
T. M.
, and
Cameron
,
K. L.
,
2010
, “
The Relationship Between Posterior Tibial Slope and Anterior Cruciate Ligament Injuries
,”
Am. J. Sports Med.
,
38
(
1
), pp.
63
67
.
19.
Beynnon
,
B. D.
,
Hall
,
J. S.
,
Sturnick
,
D. R.
,
Desarno
,
M. J.
,
Gardner-Morse
,
M.
,
Tourville
,
T. W.
,
Smith
,
H. C.
,
Slauterbeck
,
J. R.
,
Shultz
,
S. J.
,
Johnson
,
R. J.
, and
Vacek
,
P. M.
, “
Increased Slope of the Lateral Tibial Plateau Subchondral Bone is Associated With Greater Risk of Noncontact ACL Injury in Females but Not in Males: A Prospective Cohort Study With a Nested, Matched Case-Control Analysis
,”
Am. J. Sports Med.
,
42
(
5
), pp.
1039
1048
.
20.
Giffin
,
J. R.
,
Vogrin
,
T. M.
,
Zantop
,
T.
,
Woo
,
S. L.
, and
Harner
,
C. D.
,
2004
, “
Effects of Increasing Tibial Slope on the Biomechanics of the Knee
,”
Am. J. Sports Med.
,
32
(
2
), pp.
376
382
.
21.
Sturnick
,
D. R.
,
Vacek
,
P. M.
,
DeSarno
,
M. J.
,
Gardner-Morse
,
M. G.
,
Tourville
,
T. W.
,
Slauterbeck
,
J. R.
,
Johnson
,
R. J.
,
Shultz
,
S. J.
, and
Beynnon
,
B. D.
,
2015
, “
Combined Anatomic Factors Predicting Risk of Anterior Cruciate Ligament Injury for Males and Females
,”
Am. J. Sports Med.
,
43
(
4
), pp.
839
847
.
22.
Torzilli
,
P. A.
,
Deng
,
X.
, and
Warren
,
R. F.
,
1994
, “
The Effect of Joint-Compressive Load and Quadriceps Muscle Force on Knee Motion in the Intact and Anterior Cruciate Ligament-Sectioned Knee
,”
Am. J. Sports Med.
,
22
(
1
), pp.
105
112
.
23.
Markolf
,
K. L.
,
Gorek
,
J. F.
,
Kabo
,
J. M.
, and
Shapiro
,
M. S.
,
1990
, “
Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament: An In Vitro Study Performed With a New Experimental Technique
,”
J. Bone Jt. Surg. Am.
,
72
(
4
), pp.
557
567
.
24.
Markolf
,
K. L.
,
Jackson
,
S. R.
,
Foster
,
B.
, and
McAllister
,
D. R.
,
2014
, “
ACL Forces and Knee Kinematics Produced by Axial Tibial Compression During a Passive Flexion-Extension Cycle
,”
J. Orthop. Res.
,
32
(
1
), pp.
89
95
.
25.
Markolf
,
K. L.
,
Boguszewski
,
D. V.
,
Yamaguchi
,
K. T.
,
Mathew
,
J.
, and
McAllister
,
D. R.
, “
Effects of Tibiofemoral Compression on ACL Forces and Knee Kinematics Under Combined Knee Loads
,”
J. Orthop. Res.
(in press).
26.
Wall
,
S. J.
,
Rose
,
D. M.
,
Sutter
,
E. G.
,
Belkoff
,
S. M.
, and
Boden
,
B. P.
,
2012
, “
The Role of Axial Compressive and Quadriceps Forces in Noncontact Anterior Cruciate Ligament Injury: A Cadaveric Study
,”
Am. J. Sports Med.
,
40
(
3
), pp.
568
573
.
27.
Willy
,
R. W.
,
Bigelow
,
M. A.
,
Kolesar
,
A.
,
Willson
,
J. D.
, and
Thomas
,
J. S.
,
2016
, “
Knee Contact Forces and Lower Extremity Support Moments During Running in Young Individuals Post-Partial Meniscectomy
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
25
(
1
), pp.
115
122.
28.
Woo
,
S. L.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
,
1991
, “
Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex: The Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
,
19
(
3
), pp.
217
225
.
You do not currently have access to this content.