The purpose of this work is twofold: first, to synthesize a motion pattern imitating sit-to-stand (STS) and second, to compare the kinematics and dynamics of the resulting motion to healthy STS. Predicting STS in simulation inspired the creation of three models: a biomechanical model, a motion model, and performance criteria as a model of preference. First, the human is represented as three rigid links in the sagittal plane. This model captures aspects of joint, foot, and buttocks physiology, which makes it the most comprehensive planar model for predicting STS to date. Second, candidate STS trajectories are described geometrically by a set of Bézier curves which seem well suited to predictive biomechanical simulations. Third, with the assumption that healthy people naturally prioritize mechanical efficiency, disinclination to a motion is described as a cost function of joint torques, and for the first time, physical infeasibility including slipping and falling. This new dynamic optimization routine allows for motions of gradually increasing complexity while the model's performance is improving. Using these models and optimal control strategy together has produced gross motion patterns characteristic of healthy STS when compared with normative data from the literature.

References

References
1.
WHO
,
2001
, “
International Classification of Functioning, Disability and Health
,” World Health Organization, Geneva, Switzerland, accessed Jan. 27, 2017, http://www.who.int/classifications/icf/
2.
Katz
,
S.
,
Downs
,
T. D.
,
Cash
,
H. R.
, and
Grotz
,
R. C.
,
1970
, “
Progress in Development of the Index of ADL
,”
Gerontologist
,
10
(
1 Pt. 1
), pp.
20
30
.
3.
Garner
,
B.
,
1992
, “
A Dynamic Musculoskeletal Computer Model for Rising From a Squatting or Sitting Position
,” M.Sc. thesis, The University of Texas at Austin, Austin, TX.
4.
Daigle
,
K. E.
,
1994
, “
The Effect of Muscle Strength on the Coordination of Rising From a Chair in Minimum Time
,” MA thesis, The University of Texas at Austin, Austin, TX.
5.
Domire
,
Z. J.
,
2004
, “
A Biomechanical Analysis of Maximum Vertical Jumps and Sit-to-Stand
,” Ph.D. thesis, Pennsylvania State University, State College, PA.
6.
Mughal
,
A. M.
, and
Iqbal
,
K.
,
2013
, “
Fuzzy Optimal Control of Sit-to-Stand Movement in a Biomechanical Model
,”
J. Intell. Fuzzy Syst.
,
25
(
1
), pp.
247
258
.
7.
Bakar
,
N. A.
, and
Abdullah
,
A. R.
,
2011
, “
Dynamic Simulation of Sit to Stand Exercise for Paraplegia
,”
IEEE
International Conference on Control System, Computing and Engineering
, Penang, Malaysia, Nov. 25–27, pp.
114
118
.
8.
Prinz
,
R. K.
,
2005
, “
Synthesizing the Sit-to-Stand Movement Using Fuzzy Logic-Based Control and a Simple Biomechanical Model
,” M.Sc. thesis, University of Victoria, Victoria, BC, Canada.
9.
Wang
,
F. C.
,
Yu
,
C. H.
,
Lin
,
Y. L.
, and
Tsai
,
C. E.
,
2007
, “
Optimization of the Sit-to-Stand Motion
,”
IEEE/ICME
International Conference on Complex Medical Engineering
, Beijing, China, May 23–27, pp.
1248
1253
.
10.
Ozsoy
,
B.
, and
Yang
,
J.
,
2014
, “
Simulation-Based Unassisted Sit-to-Stand Motion Prediction for Healthy Young Individuals
,”
ASME
Paper No. DETC2014-34231.
11.
Janssen
,
W. G. M.
,
Bussmann
,
H. B. J.
, and
Stam
,
H. J.
,
2002
, “
Determinants of the Sit-to-Stand Movement
,”
Phys. Ther.
,
82
(
9
), pp.
866
879
.
12.
Mortenson
,
M. E.
,
2006
,
Geometric Modeling
,
Industrial Press
,
New York
.
13.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
The Prediction of Forces in Joint Structures
,”
Exercise Sport Sci. Rev.
,
9
(
1
), pp.
159
182
.
14.
Weber
,
W.
, and
Weber
,
E.
,
1836
,
Mechanik Der Menschlichen Gehwerkzeuge
,
Dietrich
,
Göttingen, Germany
.
15.
Kralj
,
A.
,
Jaeger
,
R. J.
, and
Munih
,
M.
,
1990
, “
Analysis of Standing Up and Sitting down in Humans
,”
J. Biomech.
,
23
(
11
), pp.
1123
1138
.
16.
Schenkman
,
M.
,
Berger
,
R. A.
,
Riley
,
P. O.
,
Mann
,
R. W.
, and
Hodge
,
W. A.
,
1990
, “
Whole-Body Movements During Rising to Standing From Sitting
,”
Phys. Ther.
,
70
(
10
), pp.
638
651
.
17.
Alexander
,
N. B.
,
Schultz
,
A. B.
, and
Warwick
,
D. N.
,
1991
, “
Rising From a Chair: Effects of Age and Functional Ability on Performance Biomechanics
,”
J. Gerontol.
,
46
(
3
), pp.
M91
M98
.
18.
Schultz
,
A. B.
,
Alexander
,
N. B.
, and
Ashton-Miller
,
J. A.
,
1992
, “
Biomechanical Analyses of Rising From a Chair
,”
J. Biomech.
,
25
(
12
), pp.
1383
1391
.
19.
de Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
20.
Pheasant
,
S.
,
1986
,
Bodyspace
,
Taylor & Francis
,
London
.
21.
U.S. Federal Aviation Administration
,
1982
,
Spatial Geometry of the Human Pelvis
,
H. M.
,
Reynolds
,
C. C.
,
Snow
, and
J. W.
,
Young
, eds., U.S. Federal Aviation Administration,
Washington, DC
.
22.
Pandy
,
M. G.
,
Garner
,
B. A.
, and
Anderson
,
F. C.
,
1995
, “
Optimal Control of Non-Ballistic Muscular Movements
,”
ASME J. Biomech. Eng.
,
117
(
1
), pp.
15
26
.
23.
Waterloo Maple
,
2016
, “
MapleSim Version 2016.2
,” Waterloo Maple,
Waterloo
,
ON, Canada
.
24.
Whitney
,
S. L.
,
Wrisley
,
D. M.
,
Marchetti
,
G. F.
,
Gee
,
M. A.
,
Redfern
,
M. S.
, and
Furman
,
J. M.
,
2005
, “
Clinical Measurement of Sit-to-Stand Performance in People With Balance Disorders
,”
Phys. Ther.
,
85
(
10
), pp.
1034
1045
.
25.
Yamaguchi
,
G. T.
,
2006
,
Dynamic Modelling of Musculoskeletal Motion
,
Springer Science+Business Media
,
New York
.
26.
Riener
,
R.
, and
Edrich
,
T.
,
1999
, “
Identification of Passive Elastic Joint Moments in the Lower Extremities
,”
J. Biomech.
,
32
(
5
), pp.
539
544
.
27.
Liang
,
C. C.
, and
Chaing
,
C. F.
,
2006
, “
A Study on Biodynamic Models of Seated Human Subjects Exposed to Vertical Vibration
,”
Int. J. Ind. Ergonom.
,
36
(
10
), pp.
869
890
.
28.
Wan
,
Y.
, and
Schimmels
,
J. M.
,
1997
, “
Optimal Seat Suspension Design Based on Minimum “Simulated Subjective Response
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
409
416
.
29.
Linder-Ganz
,
E.
,
Shabshin
,
N.
,
Itzchak
,
Y.
, and
Gefen
,
A.
,
2007
, “
Assessment of Mechanical Conditions in Sub-Dermal Tissues During Sitting
,”
J. Biomech.
,
40
(
7
), pp.
1443
1454
.
30.
Norman-Gerum
,
V.
, and
McPhee
,
J.
,
2017
, “
What is Sit-to-Stand Without a Chair?
Eighth ECCOMAS Thematic Conference on Multibody Dynamics
, Prague, Czech Republic, pp. 323–324.
31.
Modelica Association,
2004, “
ElastoGap
,” Modelica Standard Library, accessed July 25, 2012, http://reference.wolfram.com/system-modeler/libraries/Modelica/Modelica.Mechanics.Translational.Examples.ElastoGap.html
32.
Adragna
,
M.
,
Coyle
,
S.
,
Hawryn
,
S.
,
Martin
,
A.
,
and McConnell
,
J.
, eds.,
2000
, “
Guideline on Office Ergonomics
,” Canadian Standards Association International, Toronto, ON, Canada, Standard No. CAN/CGSB-44.232.
33.
Sandhu
,
S. S.
, and
McPhee
,
J.
,
2010
, “
A Two-Dimensional Nonlinear Volumetric Foot Contact Model
,”
ASME
Paper No. IMECE2010-39464.
34.
Engineers Edge
,
2000
, “
Coefficient of Friction Equation and Table Chart
,” Monroe, Georgia, https://www.engineersedge.com/coeffients_of_friction.htm
35.
Nuzik
,
S.
,
Lamb
,
R.
,
VanSant
,
A.
, and
Hirt
,
S.
,
1986
, “
Sit-to-Stand Movement Pattern
,”
Phys. Ther.
,
66
(
11
), pp.
1708
1713
.
36.
Winter
,
D. A.
,
Prince
,
F.
,
Frank
,
J. S.
,
Powell
,
C.
, and
Zabjek
,
K. F.
,
1996
, “
Unified Theory regarding a/P and M/L Balance in Quiet Stance
,”
J. Neurophysiol.
,
75
(
6
), pp.
2334
2343
.
37.
Nubar, Y.
, and
Contini, R.
, 1961, “
A Minimal Principle in Biomechanics
,”
Bull. Math. Biophys.
,
23
(4), pp. 377–391.
38.
The MathWorks
,
2015
, “
MATLAB version R2015a
,” The MathWorks Inc., Natick, MA.
39.
Schenkman
,
M.
,
Riley
,
P. O.
, and
Pieper
,
C.
,
1996
, “
Sit to Stand From Progressively Lower Seat Heights—Alterations in Angular Velocity
,”
Clin. Biomech.
,
11
(
3
), pp.
153
158
.
You do not currently have access to this content.