With the recent implementation of multiphasic materials in the open-source finite element (FE) software FEBio, three-dimensional (3D) models of cells embedded within the tissue may now be analyzed, accounting for porous solid matrix deformation, transport of interstitial fluid and solutes, membrane potential, and reactions. The cell membrane is a critical component in cell models, which selectively regulates the transport of fluid and solutes in the presence of large concentration and electric potential gradients, while also facilitating the transport of various proteins. The cell membrane is much thinner than the cell; therefore, in an FE environment, shell elements formulated as two-dimensional (2D) surfaces in 3D space would be preferred for modeling the cell membrane, for the convenience of mesh generation from image-based data, especially for convoluted membranes. However, multiphasic shell elements are yet to be developed in the FE literature and commercial FE software. This study presents a novel formulation of multiphasic shell elements and its implementation in FEBio. The shell model includes front- and back-face nodal degrees-of-freedom for the solid displacement, effective fluid pressure and effective solute concentrations, and a linear interpolation of these variables across the shell thickness. This formulation was verified against classical models of cell physiology and validated against reported experimental measurements in chondrocytes. This implementation of passive transport of fluid and solutes across multiphasic membranes makes it possible to model the biomechanics of isolated cells or cells embedded in their extracellular matrix (ECM), accounting for solvent and solute transport.

References

1.
Blinov
,
M. L.
,
Schaff
,
J. C.
,
Vasilescu
,
D.
,
Moraru
,
I. I.
,
Bloom
,
J. E.
, and
Loew
,
L. M.
,
2017
, “
Compartmental and Spatial Rule-Based Modeling With Virtual Cell
,”
Biophys. J.
,
113
(
7
), pp.
1365
1372
.
2.
Moraru
,
I. I.
,
Schaff
,
J. C.
,
Slepchenko
,
B. M.
, and
Loew
,
L. M.
,
2002
, “
The Virtual Cell: An Integrated Modeling Environment for Experimental and Computational Cell Biology
,”
Ann. N. Y. Acad. Sci.
,
971
, pp.
595
596
.
3.
Schaff
,
J.
,
Fink
,
C. C.
,
Slepchenko
,
B.
,
Carson
,
J. H.
, and
Loew
,
L. M.
,
1997
, “
A General Computational Framework for Modeling Cellular Structure and Function
,”
Biophys. J.
,
73
(
3
), pp.
1135
1146
.
4.
Keener
,
J. P.
, and
Sneyd
,
J.
,
2009
,
Mathematical Physiology
(Interdisciplinary Applied Mathematics, Vol. 8), 2nd ed.,
Springer
,
New York
.
5.
Kedem
,
O.
, and
Katchalsky
,
A.
,
1958
, “
Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes
,”
Biochim. Et Biophys. Acta
,
27
, pp.
229
246
.
6.
Katzir-Katchalsky
,
A.
, and
Curran
,
P. F.
,
1965
,
Nonequilibrium Thermodynamics in
Biophysics (Harvard Books in Biophysics, Vol. 1),
Harvard University Press
,
Cambridge, UK
.
7.
Truesdell
,
C.
, and
Toupin
,
R.
,
1960
,
The Classical Field Theories
(Handbuch der Physik, Vol. III/1),
Springer
,
Berlin
.
8.
Bowen
,
R.
,
1976
,
Theory of Mixtures
(Continuum Physics, Vol. 3),
Academic Press
,
New York
.
9.
Ateshian
,
G. A.
,
Likhitpanichkul
,
M.
, and
Hung
,
C. T.
,
2006
, “
A Mixture Theory Analysis for Passive Transport in Osmotic Loading of Cells
,”
J. Biomech.
,
39
(
3
), pp.
464
475
.
10.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
11.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1993
, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
,
26
(
6
), pp.
709
23
.
12.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
(
8
), pp.
793
802
.
13.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.
14.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
Febio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.
15.
Ateshian
,
G. A.
,
Albro
,
M. B.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2011
, “
Finite Element Implementation of Mechanochemical Phenomena in Neutral Deformable Porous Media Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081005
.
16.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2013
, “
Multiphasic Finite Element Framework for Modeling Hydrated Mixtures With Multiple Neutral and Charged Solutes
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111001
.
17.
Ateshian
,
G. A.
,
Nims
,
R. J.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2014
, “
Computational Modeling of Chemical Reactions and Interstitial Growth and Remodeling Involving Charged Solutes and Solid-Bound Molecules
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1105
1120
.
18.
Halloran
,
J.
,
Sibole
,
S.
,
V.
,
Donkelaar
,
C.
,
Van Turnhout
,
M.
,
Oomens
,
C. W.
,
Weiss
,
J.
,
Guilak
,
F.
, and
Erdemir
,
A.
,
2012
, “
Multiscale Mechanics of Articular Cartilage: Potentials and Challenges of Coupling Musculoskeletal, Joint, and Microscale Computational Models
,”
Ann. Biomed. Eng.
,
40
(11), pp. 2456–2474.
19.
Wilkins
,
R.
,
Browning
,
J.
, and
Ellory
,
J.
,
2000
, “
Surviving in a Matrix: Membrane Transport in Articular Chondrocytes
,”
J. Membr. Biol.
,
177
(
2
), pp.
95
108
.
20.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
(
12
), pp.
1663
1673
.
21.
Kim
,
E.
,
Guilak
,
F.
, and
Haider
,
M. A.
,
2008
, “
The Dynamic Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions Under Cyclic Compressive Loading
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061009
.
22.
Cao
,
L.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2009
, “
Pericellular Matrix Mechanics in the Anulus Fibrosus Predicted by a Three-Dimensional Finite Element Model and in Situ Morphology
,”
Cell Mol. Bioeng.
,
2
(
3
), pp.
306
319
.
23.
Cao
,
L.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2011
, “
Three-Dimensional Finite Element Modeling of Pericellular Matrix and Cell Mechanics in the Nucleus Pulposus of the Intervertebral Disk Based on in Situ Morphology
,”
Biomech. Model. Mechanobiol.
,
10
(
1
), pp.
1
10
.
24.
Tanska
,
P.
,
Mononen
,
M. E.
, and
Korhonen
,
R. K.
,
2015
, “
A Multi-Scale Finite Element Model for Investigation of Chondrocyte Mechanics in Normal and Medial Meniscectomy Human Knee Joint During Walking
,”
J. Biomech.
,
48
(
8
), pp.
1397
1406
.
25.
Ateshian
,
G. A.
,
Costa
,
K. D.
, and
Hung
,
C. T.
,
2007
, “
A Theoretical Analysis of Water Transport Through Chondrocytes
,”
Biomech. Model. Mechanobiol.
,
6
(
1–2
), pp.
91
101
.
26.
Moo
,
E. K.
,
Herzog
,
W.
,
Han
,
S. K.
,
Abu Osman
,
N. A.
,
Pingguan-Murphy
,
B.
, and
Federico
,
S.
,
2012
, “
Mechanical Behaviour of In-Situ Chondrocytes Subjected to Different Loading Rates: A Finite Element Study
,”
Biomech. Model. Mechanobiol.
,
11
(
7
), pp.
983
993
.
27.
Alexopoulos
,
L. G.
,
Haider
,
M. A.
,
Vail
,
T. P.
, and
Guilak
,
F.
,
2003
, “
Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix With Osteoarthritis
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
323
333
.
28.
Alexopoulos
,
L. G.
,
Williams
,
G. M.
,
Upton
,
M. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
,
2005
, “
Osteoarthritic Changes in the Biphasic Mechanical Properties of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
J. Biomech.
,
38
(
3
), pp.
509
517
.
29.
Trickey
,
W. R.
,
Baaijens
,
F. P.
,
Laursen
,
T. A.
,
Alexopoulos
,
L. G.
, and
Guilak
,
F.
,
2006
, “
Determination of the Poisson's Ratio of the Cell: Recovery Properties of Chondrocytes After Release From Complete Micropipette Aspiration
,”
J. Biomech.
,
39
(
1
), pp.
78
87
.
30.
Cao
,
L.
,
Youn
,
I.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2006
, “
Compressive Properties of Mouse Articular Cartilage Determined in a Novel Micro-Indentation Test Method and Biphasic Finite Element Model
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
766
771
.
31.
Nguyen
,
B. V.
,
Wang
,
Q. G.
,
Kuiper
,
N. J.
,
El Haj
,
A. J.
,
Thomas
,
C. R.
, and
Zhang
,
Z.
,
2010
, “
Biomechanical Properties of Single Chondrocytes and Chondrons Determined by Micromanipulation and Finite-Element Modelling
,”
J. R. Soc. Interface
,
7
(
53
), pp.
1723
33
.
32.
Darling
,
E.
,
Zauscher
,
S.
, and
Guilak
,
F.
,
2006
, “
Viscoelastic Properties of Zonal Articular Chondrocytes Measured by Atomic Force Microscopy
,”
Osteoarthr. Cartilage
,
14
(
6
), pp.
571
579
.
33.
Darling
,
E. M.
,
Wilusz
,
R. E.
,
Bolognesi
,
M. P.
,
Zauscher
,
S.
, and
Guilak
,
F.
,
2010
, “
Spatial Mapping of the Biomechanical Properties of the Pericellular Matrix of Articular Cartilage Measured In Situ Via Atomic Force Microscopy
,”
Biophys. J.
,
98
(
12
), pp.
2848
2856
.
34.
Nguyen
,
T. D.
, and
Gu
,
Y.
,
2014
, “
Determination of Strain-Rate-Dependent Mechanical Behavior of Living and Fixed Osteocytes and Chondrocytes Using Atomic Force Microscopy and Inverse Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
136
(
10
), p.
101004
.
35.
Haider
,
M. A.
, and
Guilak
,
F.
,
2000
, “
An Axisymmetric Boundary Integral Model for Incompressible Linear Viscoelasticity: Application to the Micropipette Aspiration Contact Problem
,”
ASME J. Biomech. Eng.
,
122
(
3
), pp.
236
244
.
36.
Haider
,
M. A.
, and
Guilak
,
F.
,
2002
, “
An Axisymmetric Boundary Integral Model for Assessing Elastic Cell Properties in the Micropipette Aspiration Contact Problem
,”
ASME J. Biomech. Eng.
,
124
(
5
), pp.
586
595
.
37.
Baaijens
,
F. P.
,
Trickey
,
W. R.
,
Laursen
,
T. A.
, and
Guilak
,
F.
,
2005
, “
Large Deformation Finite Element Analysis of Micropipette Aspiration to Determine the Mechanical Properties of the Chondrocyte
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
494
501
.
38.
Haider
,
M. A.
, and
Guilak
,
F.
,
2007
, “
Application of a Three-Dimensional Poroelastic Bem to Modeling the Biphasic Mechanics of Cell–Matrix Interactions in Articular Cartilage
,”
Comput. Method Appl. Mech. Eng.
,
196
(
31–32
), pp.
2999
3010
.
39.
Kim
,
E.
,
Guilak
,
F.
, and
Haider
,
M. A.
,
2010
, “
An Axisymmetric Boundary Element Model for Determination of Articular Cartilage Pericellular Matrix Properties in Situ Via Inverse Analysis of Chondron Deformation
,”
ASME J. Biomech. Eng.
,
132
(
3
), p.
031011
.
40.
Guilak
,
F.
,
Alexopoulos
,
L. G.
,
Upton
,
M. L.
,
Youn
,
I.
,
Choi
,
J. B.
,
Cao
,
L.
,
Setton
,
L. A.
, and
Haider
,
M. A.
,
2006
, “
The Pericellular Matrix as a Transducer of Biomechanical and Biochemical Signals in Articular Cartilage
,”
Ann. N.Y. Acad. Sci.
,
1068(1
), pp.
498
512
.
41.
Guilak
,
F.
,
Haider
,
M. A.
,
Setton
,
L. A.
,
Laursen
,
T. A.
, and
Baaijens
,
F. P. T.
,
2006
,
Multiphasic Models of Cell Mechanics. Cambridge Texts in Biomedical Engineering
,
Cambridge University Press
,
Cambridge, UK
, pp.
84
102
.
42.
Haider
,
M. A.
,
Schugart
,
R. C.
,
Setton
,
L. A.
, and
Guilak
,
F.
,
2006
, “
A Mechano-Chemical Model for the Passive Swelling Response of an Isolated Chondron Under Osmotic Loading
,”
Biomech. Model. Mechanobiol.
,
5
(
2–3
), pp.
160
171
.
43.
Bischoff
,
M.
,
Bletzinger
,
K.-U.
,
Wall
,
W.
, and
Ramm
,
E.
, 2004, “
Models and Finite Elements for Thin-Walled Structures
,”
Encyclopedia of Computational Mechanics
, Vol. 2, E. Stein, R. Borst, de, and T. Hughes, eds., Wiley, Chichester, UK.
44.
Simo
,
J.
,
Rifai
,
M.
, and
Fox
,
D.
,
1990
, “
On a Stress Resultant Geometrically Exact Shell Model—Part IV: Variable Thickness Shells With Through-the-Thickness Stretching
,”
Comput Method Appl. Mech. Eng.
,
81
(
1
), pp.
91
126
.
45.
Ahmad
,
S.
,
Irons
,
B. M.
, and
Zienkiewicz
,
O.
,
1970
, “
Analysis of Thick and Thin Shell Structures by Curved Finite Elements
,”
Int. J. Numer. Methods Eng.
,
2
(
3
), pp.
419
451
.
46.
Parisch
,
H.
,
1995
, “
A Continuum-Based Shell Theory for Non-Linear Applications
,”
Int. J. Numer. Methods Eng.
,
38
(
11
), pp.
1855
1883
.
47.
Miehe
,
C.
,
1998
, “
A Theoretical and Computational Model for Isotropic Elastoplastic Stress Analysis in Shells at Large Strains
,”
Comput. Method. Appl. Mech. Eng.
,
155
(
3–4
), pp.
193
233
.
48.
Klinkel
,
S.
,
Gruttmann
,
F.
, and
Wagner
,
W.
,
1999
, “
A Continuum Based Three-Dimensional Shell Element for Laminated Structures
,”
Comput. Struct.
,
71
(
1
), pp.
43
62
.
49.
Vu-Quoc
,
L.
, and
Tan
,
X.
,
2003
, “
Optimal Solid Shells for Non-Linear Analyses of Multilayer Composites—I: Statics
,”
Comput. Method Appl. Mech. Eng.
,
192
(
9–10
), pp.
975
1016
.
50.
MacNeal
,
R. H.
,
1978
, “
A Simple Quadrilateral Shell Element
,”
Comput. Struct.
,
8
(
2
), pp.
175
183
.
51.
Bathe
,
K.-J.
, and
Dvorkin
,
E. N.
,
1986
, “
A Formulation of General Shell Elements—The Use of Mixed Interpolation of Tensorial Components
,”
Int. J. Numer. Methods Eng.
,
22
(
3
), pp.
697
722
.
52.
Betsch
,
P.
, and
Stein
,
E.
,
1995
, “
An Assumed Strain Approach Avoiding Artificial Thickness Straining for a Non-Linear 4-Node Shell Element
,”
Int. J. Numer. Methods Biomed. Eng.
,
11
(
11
), pp.
899
909
.
53.
Bischoff
,
M.
, and
Ramm
,
E.
,
1997
, “
Shear Deformable Shell Elements for Large Strains and Rotations
,”
Int. J. Numer. Methods Eng.
,
40
(
23
), pp.
4427
4449
.
54.
Simo
,
J. C.
, and
Rifai
,
M.
,
1990
, “
A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes
,”
Int. J. Numer. Methods Eng.
,
29
(
8
), pp.
1595
1638
.
55.
Simo
,
J.
,
Armero
,
F.
, and
Taylor
,
R.
,
1993
, “
Improved Versions of Assumed Enhanced Strain Tri-Linear Elements for 3D Finite Deformation Problems
,”
Comput. Method Appl. Mech. Eng.
,
110
(
3–4
), pp.
359
386
.
56.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1999
, “
A Mixed Finite Element Formulation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
(
10
), pp.
1375
1402
.
57.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, New York
.
58.
Maas, S. A., Rawlins, D., Weiss, J. A., and Ateshian, G. A., 2018, “
Febio 2.7 Theory Manual
,” accessed Aug. 16, 2018, https://help.febio.org/FEBio/FEBio_tm_2_7/index.html
59.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
60.
Guilak
,
F.
,
Erickson
,
G. R.
, and
Ting-Beall
,
H. P.
,
2002
, “
The Effects of Osmotic Stress on the Viscoelastic and Physical Properties of Articular Chondrocytes
,”
Biophys. J.
,
82
(
2
), pp.
720
727
.
61.
Chao
,
P. G.
,
Tang
,
Z.
,
Angelini
,
E.
,
West
,
A. C.
,
Costa
,
K. D.
, and
Hung
,
C. T.
,
2005
, “
Dynamic Osmotic Loading of Chondrocytes Using a Novel Microfluidic Device
,”
J. Biomech.
,
38
(
6
), pp.
1273
1281
.
62.
Albro
,
M. B.
,
Petersen
,
L. E.
,
Li
,
R.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2009
, “
Influence of the Partitioning of Osmolytes by the Cytoplasm on the Passive Response of Cells to Osmotic Loading
,”
Biophys. J.
,
97
(
11
), pp.
2886
2893
.
63.
Alberts
,
B.
,
2002
,
Molecular Biology of the Cell
, 4th ed.,
Garland Science
,
New York
.
64.
Albro
,
M. B.
,
Chahine
,
N. O.
,
Caligaris
,
M.
,
Wei
,
V. I.
,
Likhitpanichkul
,
M.
,
Ng
,
K. W.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2007
, “
Osmotic Loading of Spherical Gels: A Biomimetic Study of Hindered Transport in the Cell Protoplasm
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
503
510
.
65.
Mauck
,
R. L.
,
Soltz
,
M. A.
,
Wang
,
C. C.
,
Wong
,
D. D.
,
Chao
,
P. H.
,
Valhmu
,
W. B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2000
, “
Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels
,”
ASME J. Biomech. Eng.
,
122
(
3
), pp.
252
260
.
66.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2010
, “
Finite Element Algorithm for Frictionless Contact of Porous Permeable Media Under Finite Deformation and Sliding
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061006
.
67.
Maas, S. A., Rawlins, D., Weiss, J. A., and Ateshian, G. A., 2018, "Febio 2.8 User Manual," accessed Aug. 16, 2018, https://help.febio.org/FEBio/FEBio_um_2_8/index.html
68.
Hoffmann
,
E. K.
,
Lambert
,
I. H.
, and
Pedersen
,
S. F.
,
2009
, “
Physiology of Cell Volume Regulation in Vertebrates
,”
Physiol. Rev.
,
89
(
1
), pp.
193
277
.
69.
Tsuga
,
K.
,
Tohse
,
N.
,
Yoshino
,
M.
,
Sugimoto
,
T.
,
Yamashita
,
T.
,
Ishii
,
S.
, and
Yabu
,
H.
,
2002
, “
Chloride Conductance Determining Membrane Potential of Rabbit Articular Chondrocytes
,”
J. Membr. Biol.
,
185
(
1
), pp.
75
81
.
70.
Wilson
,
J. R.
,
Duncan
,
N. A.
,
Giles
,
W. R.
, and
Clark
,
R. B.
,
2004
, “
A Voltage-Dependent k+ Current Contributes to Membrane Potential of Acutely Isolated Canine Articular Chondrocytes
,”
J. Physiol.
,
557
(
1
), pp.
93
104
.
71.
Lewis
,
R.
,
Asplin
,
K. E.
,
Bruce
,
G.
,
Dart
,
C.
,
Mobasheri
,
A.
, and
Barrett-Jolley
,
R.
,
2011
, “
The Role of the Membrane Potential in Chondrocyte Volume Regulation
,”
J. Cell Physiol.
,
226
(
11
), pp.
2979
2986
.
72.
Hall
,
A.
,
Starks
,
I.
,
Shoults
,
C.
, and
Rashidbigi
,
S.
,
1996
, “
Pathways for k+ Transport Across the Bovine Articular Chondrocyte Membrane and Their Sensitivity to Cell Volume
,”
Am. J. Physiol.—Cell Ph.
,
270
(
5
), pp.
C1300
C1310
.
73.
Freeman
,
M.
,
1979
,
Adult Articular Cartilage
, 2nd ed., Pitman Medical, Kent, UK.
74.
Guilak
,
F.
,
2000
, “
The Deformation Behavior and Viscoelastic Properties of Chondrocytes in Articular Cartilage
,”
Biorheology
,
37
(
1
), pp.
27
44
.
75.
Oswald
,
E. S.
,
Chao
,
P.-H. G.
,
Bulinski
,
J. C.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2008
, “
Dependence of Zonal Chondrocyte Water Transport Properties on Osmotic Environment
,”
Cell. Mol. Bioeng.
,
1
(
4
), pp.
339
348
.
76.
Maidhof
,
R.
,
Jacobsen
,
T.
,
Papatheodorou
,
A.
, and
Chahine
,
N. O.
,
2014
, “
Inflammation Induces Irreversible Biophysical Changes in Isolated Nucleus Pulposus Cells
,”
PLoS One
,
9
(
6
), p.
e99621
.
77.
Sánchez
,
J. C.
, and
Wilkins
,
R. J.
,
2004
, “
Changes in Intracellular Calcium Concentration in Response to Hypertonicity in Bovine Articular Chondrocytes
,”
Comp. Biochem. Phys. A
,
137
(
1
), pp.
173
182
.
78.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
576
586
.
79.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
,
2009
, “
Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061003
.
80.
Hou
,
C.
, and
Ateshian
,
G. A.
,
2016
, “
A Gauss-Kronrod-Trapezoidal Integration Scheme for Modeling Biological Tissues With Continuous Fiber Distributions
,”
Comput. Method Biomech.
,
19
(
8
), pp.
883
893
.
81.
Wilusz
,
R. E.
,
Sanchez-Adams
,
J.
, and
Guilak
,
F.
,
2014
, “
The Structure and Function of the Pericellular Matrix of Articular Cartilage
,”
Matrix Biol.
,
39
, pp.
25
32
.
82.
Hille
,
B.
,
2001
,
Ion Channels of Excitable Membranes
, 3rd ed.,
Sinauer
,
Sunderland, MA
.
83.
Weiss
,
T. F.
,
1996
,
Cellular Biophysics
,
MIT Press
,
Cambridge, MA
.
84.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
423
445
.
85.
Tieleman
,
D. P.
,
Marrink
,
S.-J.
, and
Berendsen
,
H. J.
,
1997
, “
A Computer Perspective of Membranes: Molecular Dynamics Studies of Lipid Bilayer Systems
,”
Biochim. Biophys. Acta (BBA)-Rev. Biomembr.
,
1331
(
3
), pp.
235
270
.
86.
Feller
,
S. E.
,
2000
, “
Molecular Dynamics Simulations of Lipid Bilayers
,”
Curr. Opin. Colloid Interface Sci.
,
5
(
3–4
), pp.
217
223
.
87.
Phillips
,
J. C.
,
Braun
,
R.
,
Wang
,
W.
,
Gumbart
,
J.
,
Tajkhorshid
,
E.
,
Villa
,
E.
,
Chipot
,
C.
,
Skeel
,
R. D.
,
Kale
,
L.
, and
Schulten
,
K.
,
2005
, “
Scalable Molecular Dynamics With NAMD
,”
J. Comput. Chem.
,
26
(
16
), pp.
1781
1802
.
88.
Lindahl
,
E.
, and
Sansom
,
M. S.
,
2008
, “
Membrane Proteins: Molecular Dynamics Simulations
,”
Curr. Opin. Struct. Biol.
,
18
(
4
), pp.
425
431
.
89.
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2010
, “
Anisotropic Hydraulic Permeability Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111004
.
90.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2012
, “
Solute Transport Across a Contact Interface in Deformable Porous Media
,”
J. Biomech.
,
45
(
6
), pp.
1023
1027
.
You do not currently have access to this content.