A three-dimensional fluid-structure interaction computational model was used to investigate the effect of the longitudinal variation of vocal fold inner layer thickness on voice production. The computational model coupled a finite element method based continuum vocal fold model and a Navier–Stokes equation based incompressible flow model. Four vocal fold models, one with constant layer thickness and the others with different degrees of layer thickness variation in the longitudinal direction, were studied. It was found that the varied thickness resulted in up to 24% stiffness reduction at the middle and up to 47% stiffness increase near the anterior and posterior ends of the vocal fold; however, the average stiffness was not affected. The fluid-structure interaction simulations on the four models showed that the thickness variation did not affect vibration amplitude, glottal flow rate, and the waveform related parameters. However, it increased glottal angles at the middle of the vocal fold, suggesting that vocal fold vibration amplitude was determined by the average stiffness of the vocal fold, while the glottal angle was determined by the local stiffness. The models with longitudinal variation of layer thickness consumed less energy during the vibrations compared with the constant layer thickness one.

References

References
1.
Mittal
,
R.
,
Zheng
,
X.
,
Bhardwaj
,
R.
,
Seo
,
J. H.
,
Xue
,
Q.
, and
Bielamowicz
,
S.
,
2011
, “
Toward a Simulation-Based Tool for the Treatment of Vocal Fold Paralysis
,”
Front. Physiol.
,
2
(19).
2.
Weiss
,
S.
,
Sutor
,
A.
,
Ilg
,
J.
,
Rupitsch
,
S. J.
, and
Lerch
,
R.
,
2016
, “
Measurement and Analysis of the Material Properties and Oscillation Characteristics of Synthetic Vocal Folds
,”
Acta Acust. Acust.
,
102
(
2
), pp.
214
229
.
3.
Murray
,
P. R.
,
Thomson
,
S. L.
, and
Smith
,
M. E.
,
2014
, “
A Synthetic, Self-Oscillating Vocal Fold Model Platform for Studying Augmentation Injection
,”
J. Voice
,
28
(
2
), pp.
133
143
.
4.
Hirano
,
M.
,
Kurita
,
S.
, and
Nakashima
,
T.
,
1981
, “
The Structure of the Vocal Folds
,”
Vocal Fold Physiology
, K. Stevens and M. Hirano, eds., University of Tokyo, Tokyo, Japan, pp. 33–41.
5.
Murray
,
P. R.
, and
Thomson
,
S. L.
,
2011
, “
Synthetic, Multi-Layer, Self-Oscillating Vocal Fold Model Fabrication
,”
J. Vis. Exp.
,
58
, p. e3498.
6.
Xuan
,
Y.
, and
Zhang
,
Z.
,
2014
, “
Influence of Embedded Fibers and an Epithelium Layer on the Glottal Closure Pattern in a Physical Vocal Fold Model
,”
J. Speech. Lang. Hear. Res.
,
57
(
2
), pp.
416
425
.
7.
Story
,
B. H.
, and
Titze
,
I. R.
,
1995
, “
Voice Simulation With a Body-Cover Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
97
(
2
), p.
1249
.
8.
Tokuda
,
I.
,
Horáček
,
J.
,
Švec
,
J. G.
, and
Herzel
,
H.
,
2007
, “
Comparison of Biomechanical Modeling of Register Transitions and Voice Instabilities With Excised Larynx Experiments
,”
J. Acoust. Soc. Am.
,
122
(
1
), pp.
519
531
.
9.
Bhattacharya
,
P.
,
Kelleher
,
J. E.
, and
Siegmund
,
T.
,
2015
, “
Role of Gradients in Vocal Fold Elastic Modulus on Phonation
,”
J. Biomech.
,
48
(
12
), pp.
3356
3363
.
10.
Zhang
,
Z.
,
2014
, “
The Influence of Material Anisotropy on Vibration at Onset in a Three-Dimensional Vocal Fold Model
,”
J. Acoust. Soc. Am.
,
135
(
3
), pp.
1480
1490
.
11.
Titze
,
I. R.
, and
Talkin
,
D. T.
,
1979
, “
A Theoretical Study of the Effects of Various Laryngeal Configurations on the Acoustics of Phonation
,”
J. Acoust. Soc. Am.
,
66
(
1
), pp.
60
74
.
12.
Cook
,
D. D.
,
Nauman
,
E.
, and
Mongeau
,
L.
,
2009
, “
Ranking Vocal Fold Model Parameters by Their Influence on Modal Frequencies
,”
J. Acoust. Soc. Am.
,
126
(
4
), pp.
2002
2010
.
13.
Xue
,
Q.
,
Zheng
,
X.
,
Bielamowicz
,
S.
, and
Mittal
,
R.
,
2011
, “
Sensitivity of Vocal Fold Vibratory Modes to Their Three-Layer Structure: Implications for Computational Modeling of Phonation
,”
J. Acoust. Soc. Am.
,
130
(
2
), pp.
965
976
.
14.
Titze
,
I. R.
,
2000
,
Principles of Voice Production
, National Center for Voice and Speech,
Iowa City, IA
.
15.
Berry
,
D. A.
,
Montequin
,
D. W.
, and
Tayama
,
N.
,
2001
, “
High-Speed Digital Imaging of the Medial Surface of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
110
(
5
), pp.
2539
2547
.
16.
Cook
,
D. A.
,
Nauman
,
E.
, and
Mongeau
,
L.
,
2008
, “
Reducing the Number of Vocal Fold Mechanical Tissue Properties: Evaluation of the Incompressibility and Planar Displacement Assumptions
,”
J. Acoust. Soc. Am.
,
124
(
6
), pp.
3888
3896
.
17.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.
18.
Zheng
,
X.
,
2009
,
Biomechanical Modeling of Glottal Aerodynamics and Vocal Fold Vibration During Phonation
,
George Washington University
,
Washington, DC
.
19.
Zheng
,
X.
,
Xue
,
Q.
,
Mittal
,
R.
, and
Beilamowicz
,
S.
,
2010
, “
A Coupled Sharp-Interface Immersed Boundary-Finite-Element Method for Flow-Structure Interaction With Application to Human Phonation
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111003
.
20.
Zheng
,
X.
,
Mittal
,
R.
,
Xue
,
Q.
, and
Bielamowicz
,
S.
,
2011
, “
Direct-Numerical Simulation of the Glottal Jet and Vocal-Fold Dynamics in a Three-Dimensional Laryngeal Model
,”
J. Acoust. Soc. Am.
,
130
(
1
), pp.
404
415
.
21.
Tao
,
C.
, and
Jiang
,
J. J.
,
2008
, “
A Self-Oscillating Biophysical Computer Model of the Elongated Vocal Fold
,”
Comput. Biol. Med.
,
38
(
11–12
), pp.
1211
1217
.
22.
Gunter
,
H. E.
,
2004
, “
Modeling Mechanical Stresses as a Factor in the Etiology of Benign Vocal Fold Lesions
,”
J. Biomech.
,
37
(
7
), pp.
1119
1124
.
23.
Gunter
,
H. E.
,
2003
, “
A Mechanical Model of Vocal-Fold Collision With High Spatial and Temporal Resolution
,”
J. Acoust. Soc. Am.
,
113
(
2
), pp.
994
1000
.
24.
Alipour
,
F.
, and
Scherer
,
R. C.
,
2000
, “
Vocal Fold Bulging Effects on Phonation Using a Biophysical Computer Model
,”
J. Voice
,
14
(
4
), pp.
470
483
.
25.
Story
,
B. H.
,
2005
, “
A Parametric Model of the Vocal Tract Area Function for Vowel and Consonant Simulation
,”
J. Acoust. Soc. Am.
,
117
(
5
), p.
3231
.
26.
Story
,
B. H.
,
Titze
,
I. R.
, and
Hoffman
,
E. A.
,
1996
, “
Vocal Tract Area Functions From Magnetic Resonance Imaging
,”
J. Acoust. Soc. Am.
,
100
(
1
), pp.
537
554
.
27.
Zheng
,
X.
,
Bielamowicz
,
S.
,
Luo
,
H.
, and
Mittal
,
R.
,
2009
, “
A Computational Study of the Effect of False Vocal Folds on Glottal Flow and Vocal Fold Vibration During Phonation
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
625
642
.
28.
Zhang
,
Z.
,
2016
, “
Cause-Effect Relationship Between Vocal Fold Physiology and Voice Production in a Three-Dimensional Phonation Model
,”
J. Acoust. Soc. Am.
,
139
(
4
), pp.
1493
1507
.
29.
Alipour
,
F.
,
Berry
,
D. A.
, and
Titze
,
I. R.
,
2000
, “
A Finite-Element Model of Vocal-Fold Vibration
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
3003
3012
.
30.
Xue
,
Q.
,
Mittal
,
R.
,
Zheng
,
X.
, and
Bielamowicz
,
S.
,
2012
, “
Computational Modeling of Phonatory Dynamics in a Tubular Three-Dimensional Model of the Human Larynx
,”
J. Acoust. Soc. Am.
,
132
(
3
), pp.
1602
1613
.
31.
Xue
,
Q.
,
Zheng
,
X.
,
Mittal
,
R.
, and
Bielamowicz
,
S.
,
2014
, “
Subject-Specific Computational Modeling of Human Phonation
,”
J. Acoust. Soc. Am.
,
135
(
3
), pp.
1445
1456
.
32.
Zheng
,
X.
,
Mittal
,
R.
, and
Bielamowicz
,
S.
,
2011
, “
A Computational Study of Asymmetric Glottal Jet Deflection During Phonation
,”
J. Acoust. Soc. Am.
,
129
(
4
), pp.
2133
2143
.
33.
Xue
,
Q.
, and
Zheng
,
X.
,
2017
, “
The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-Dimensional Computational Laryngeal Model
,”
J. Voice
,
31
(
3
), pp.
275
281
.
34.
Geng
,
B.
,
Xue
,
Q.
, and
Zheng
,
X.
,
2017
, “
A Finite Element Study on the Cause of Vocal Fold Vertical Stiffness Variation
,”
J. Acoust. Soc. Am.
,
141
(
4
), pp.
EL351
EL356
.
35.
Berry
,
D.
,
Herzel
,
H.
,
Titze
,
I. R.
, and
Krischer
,
K.
,
1994
, “
Interpretation of Biomechanical Simulations of Normal and Chaotic Vocal Fold Oscillations With Empirical Eigenfunctions
,”
J. Acoust. Soc. Am.
,
95
(
6
), pp.
3595
3604
.
36.
Thomson
,
S. L.
,
Mongeau
,
L.
, and
Frankel
,
S. H.
,
2005
, “
Aerodynamic Transfer of Energy to the Vocal Folds
,”
J. Acoust. Soc. Am.
,
118
(
3
), p.
1689
.
37.
Dion
,
G. R.
,
Jeswani
,
S.
,
Roof
,
S.
,
Fritz
,
M.
,
Coelho
,
P. G.
,
Sobieraj
,
M.
,
Amin
,
M. R.
, and
Branski
,
R. C.
,
2016
, “
Functional Assessment of the Ex Vivo Vocal Folds Through Biomechanical Testing: A Review
,”
Mater. Sci. Eng. C
,
64
, pp.
444
453
.
38.
Dembinski
,
D.
,
Oren
,
L.
,
Gutmark
,
E.
, and
Khosla
,
S. M.
,
2014
, “
Biomechanical Measurements of Vocal Fold Elasticity
,”
OA Tissue Eng.
,
2
(1), pp.
1
5
.http://www.oapublishinglondon.com/article/1483
39.
Miri
,
A. K.
,
2014
, “
Mechanical Characterization of Vocal Fold Tissue: A Review Study
,”
J. Voice
,
28
(
6
), pp.
657
667
.
40.
Oren
,
L.
,
Dembinski
,
D.
,
Gutmark
,
E.
, and
Khosla
,
S.
,
2014
, “
Characterization of the Vocal Fold Vertical Stiffness in a Canine Model
,”
J. Voice
,
28
(
3
), pp.
297
304
.
You do not currently have access to this content.