A fluid–structure interaction (FSI) model of a left anterior descending (LAD) coronary artery was developed, incorporating transient blood flow, cyclic bending motion of the artery, and myocardial contraction. The three-dimensional (3D) geometry was constructed based on a patient's computed tomography angiography (CTA) data. To simulate disease conditions, a plaque was placed within the LAD to create a 70% stenosis. The bending motion of the blood vessel was prescribed based on the LAD spatial information. The pressure induced by myocardial contraction was applied to the outside of the blood vessel wall. The fluid domain was solved using the Navier–Stokes equations. The arterial wall was defined as a nonlinear elastic, anisotropic, and incompressible material, and the mechanical behavior was described using the modified hyper-elastic Mooney–Rivlin model. The fluid (blood) and solid (vascular wall) domains were fully coupled. The simulation results demonstrated that besides vessel bending/stretching motion, myocardial contraction had a significant effect on local hemodynamics and vascular wall stress/strain distribution. It not only transiently increased blood flow velocity and fluid wall shear stress, but also changed shear stress patterns. The presence of the plaque significantly reduced vascular wall tensile strain. Compared to the coronary artery models developed previously, the current model had improved physiological relevance.

References

References
1.
Aggarwal
,
R.
,
Ferenxzi
,
E.
, and
Muirhead
,
N.
,
2007
,
One Stop Doc Cardiology
,
CRC Press
, Boca Raton, FL.
2.
Harsh
,
M.
,
2010
,
Textbook of Pathology
,
Jaypee Brothers Medical Publishers (P) Ltd
., New Delhi, India.
3.
CDC Wonder Online Database,
2013
, “
Underlying Cause of Death 1999–2013 on CDC Wonder Online Database
,” Atlanta, GA.
4.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
,
2005
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Invest.
,
85
(
1
), pp.
9
23
.
5.
Jufri
,
N. F.
,
Mohamedali
,
A.
,
Avolio
,
A.
, and
Baker
,
M. S.
,
2015
, “
Mechanical Stretch: Physiological and Pathological Implications for Human Vascular Endothelial Cells
,”
Vasc. Cell
,
7
(
1
), p.
8
.
6.
Meza
,
D.
,
Abejar
,
L.
,
Rubenstein
,
D. A.
, and
Yin
,
W.
,
2016
, “
A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells
,”
ASME J. Biomech. Eng.
,
138
(
3
), p.
4032550
.
7.
Tecelao
,
S. R.
,
Zwanenburg
,
J. J.
,
Kuijer
,
J. P.
, and
Marcus
,
J. T.
,
2006
, “
Extended Harmonic Phase Tracking of Myocardial Motion: Improved Coverage of Myocardium and Its Effect on Strain Results
,”
J. Magn. Reson. Imaging
,
23
(
5
), pp.
682
690
.
8.
Vis
,
M. A.
,
Sipkema
,
P.
, and
Westerhof
,
N.
,
1995
, “
Modeling Pressure-Area Relations of Coronary Blood Vessels Embedded in Cardiac Muscle in Diastole and Systole
,”
Am. J. Physiol.
,
268
(
6 Pt. 2
), pp.
H2531
H2543
.
9.
Qiu
,
Y.
, and
Tarbell
,
J. M.
,
2000
, “
Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
77
85
.
10.
Santamarina
,
A.
,
Weydahl
,
E.
,
Siegel
,
J. M.
, Jr.
, and
Moore
,
J. E.
, Jr.
,
1998
, “
Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-Varying Curvature
,”
Ann. Biomed. Eng.
,
26
(
6
), pp.
944
954
.
11.
Van Langenhove
,
G.
,
Wentzel
,
J. J.
,
Krams
,
R.
,
Slager
,
C. J.
,
Hamburger
,
J. N.
, and
Serruys
,
P. W.
,
2000
, “
Helical Velocity Patterns in a Human Coronary Artery: A Three-Dimensional Computational Fluid Dynamic Reconstruction Showing the Relation With Local Wall Thickness
,”
Circulation
,
102
(
3
), pp.
E22
E24
.
12.
Malve
,
M.
,
Gharib
,
A. M.
,
Yazdani
,
S. K.
,
Finet
,
G.
,
Martinez
,
M. A.
,
Pettigrew
,
R.
, and
Ohayon
,
J.
,
2015
, “
Tortuosity of Coronary Bifurcation as a Potential Local Risk Factor for Atherosclerosis: CFD Steady State Study Based on In Vivo Dynamic CT Measurements
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
82
93
.
13.
Mahalingam
,
A.
,
Gawandalkar
,
U. U.
,
Kini
,
G.
,
Buradi
,
A.
,
Araki
,
T.
,
Ikeda
,
N.
,
Nicolaides
,
A.
,
Laird
,
J. R.
,
Saba
,
L.
, and
Suri
,
J. S.
,
2016
, “
Numerical Analysis of the Effect of Turbulence Transition on the Hemodynamic Parameters in Human Coronary Arteries
,”
Cardiovasc. Diagn. Ther.
,
6
(
3
), pp.
208
220
.
14.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
,
2009
, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
109
134
.
15.
Torii
,
R.
,
Wood
,
N. B.
,
Hadjiloizou
,
N.
,
Dowsey
,
A. W.
,
Wright
,
A. R.
,
Hughes
,
A. D.
,
Davies
,
J.
,
Francis
,
D. P.
,
Mayet
,
J.
,
Yang
,
G.-Z.
,
Thom
,
S. A. M.
, and
Xu
,
X. Y.
,
2009
, “
Fluid–Structure Interaction Analysis of a Patient-Specific Right Coronary Artery With Physiological Velocity and Pressure Waveforms
,”
Commun. Numer. Methods Eng.
,
25
(
5
), pp.
565
580
.
16.
Hasan
,
M.
,
Rubenstein
,
D. A.
, and
Yin
,
W.
,
2013
, “
Effects of Cyclic Motion on Coronary Blood Flow
,”
ASME J. Biomech. Eng.
,
135
(
12
), p.
121002
.
17.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ethier
,
C. R.
,
2003
, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
420
429
.
18.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K.
,
Bach
,
R.
, and
Ku
,
D. N.
,
2009
, “
3D MRI-Based Anisotropic FSI Models With Cyclic Bending for Human Coronary Atherosclerotic Plaque Mechanical Analysis
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061010
.
19.
Smith
,
N. P.
,
2004
, “
A Computational Study of the Interaction Between Coronary Blood Flow and Myocardial Mechanics
,”
Physiol. Meas.
,
25
(
4
), pp.
863
877
.
20.
Cookson
,
A. N.
,
Lee
,
J.
,
Michler
,
C.
,
Chabiniok
,
R.
,
Hyde
,
E.
,
Nordsletten
,
D. A.
,
Sinclair
,
M.
,
Siebes
,
M.
, and
Smith
,
N. P.
,
2012
, “
A Novel Porous Mechanical Framework for Modelling the Interaction Between Coronary Perfusion and Myocardial Mechanics
,”
J. Biomech.
,
45
(
5
), pp.
850
855
.
21.
Spann
,
J. A.
,
1993
, “
Heart Contraction and Coronary Blood Flow
,”
Recent Advances in Coronary Circulation
,
Springer
, Tokyo, Japan, pp.
60
68
.
22.
Zhang
,
W.
,
Herrera
,
C.
,
Atluri
,
S. N.
, and
Kassab
,
G. S.
,
2004
, “
Effect of Surrounding Tissue on Vessel Fluid and Solid Mechanics
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
760
769
.
23.
Ohayon
,
J.
,
Gharib
,
A. M.
,
Garcia
,
A.
,
Heroux
,
J.
,
Yazdani
,
S. K.
,
Malve
,
M.
,
Tracqui
,
P.
,
Martinez
,
M. A.
,
Doblare
,
M.
,
Finet
,
G.
, and
Pettigrew
,
R. I.
,
2011
, “
Is Arterial Wall-Strain Stiffening an Additional Process Responsible for Atherosclerosis in Coronary Bifurcations?: An In Vivo Study Based on Dynamic CT and MRI
,”
Am. J. Physiol. Heart Circ. Physiol.
,
301
(
3
), pp.
H1097
H1106
.
24.
Shanmugavelayudam
,
S. K.
,
Rubenstein
,
D. A.
, and
Yin
,
W.
,
2010
, “
Effect of Geometrical Assumptions on Numerical Modeling of Coronary Blood Flow Under Normal and Disease Conditions
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061004
.
25.
Gradus-Pizlo
,
I.
,
Bigelow
,
B.
,
Mahomed
,
Y.
,
Sawada
,
S. G.
,
Rieger
,
K.
, and
Feigenbaum
,
H.
,
2003
, “
Left Anterior Descending Coronary Artery Wall Thickness Measured by High-Frequency Transthoracic and Epicardial Echocardiography Includes Adventitia
,”
Am. J. Cardiol.
,
91
(
1
), pp.
27
32
.
26.
Oviedo
,
C.
,
Maehara
,
A.
,
Mintz
,
G. S.
,
Araki
,
H.
,
Choi
,
S. Y.
,
Tsujita
,
K.
,
Kubo
,
T.
,
Doi
,
H.
,
Templin
,
B.
,
Lansky
,
A. J.
,
Dangas
,
G.
,
Leon
,
M. B.
,
Mehran
,
R.
,
Tahk
,
S. J.
,
Stone
,
G. W.
,
Ochiai
,
M.
, and
Moses
,
J. W.
,
2010
, “
Intravascular Ultrasound Classification of Plaque Distribution in Left Main Coronary Artery Bifurcations: Where Is the Plaque Really Located?
,”
Circ. Cardiovasc. Interv.
,
3
(
2
), pp.
105
112
.
27.
Zandwijk
,
J. K.
,
2014
,
Dynamic Geometry and Plaque Development in the Coronary Arteries
, Department of Radiology & Center for Medical Imaging – North East Netherlands, University of Groningen, Groningen.
28.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1
), pp.
1
48
.
29.
ADINA R&D, Inc.
,
2012
,
ADINA Theory and Modeling Guide
,
ADINA R&D
,
Watertown, MA
.
30.
Kural
,
M. H.
,
Cai
,
M.
,
Tang
,
D.
,
Gwyther
,
T.
,
Zheng
,
J.
, and
Billiar
,
K. L.
,
2012
, “
Planar Biaxial Characterization of Diseased Human Coronary and Carotid Arteries for Computational Modeling
,”
J. Biomech.
,
45
(
5
), pp.
790
798
.
31.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Yamada
,
H.
, and
Razaghi
,
R.
,
2014
, “
A Nonlinear Finite Element Simulation of Balloon Expandable Stent for Assessment of Plaque Vulnerability Inside a Stenotic Artery
,”
Med. Biol. Eng. Comput.
,
52
(
7
), pp.
589
599
.
32.
Florenciano-Sanchez
,
R.
,
de la Morena-Valenzuela
,
G.
,
Villegas-Garcia
,
M.
,
Soria-Arcos
,
F.
,
Rubio-Paton
,
R.
,
Teruel-Carrillo
,
F.
,
Hurtado
,
J.
, and
Valdes-Chavarri
,
M.
,
2005
, “
Noninvasive Assessment of Coronary Flow Velocity Reserve in Left Anterior Descending Artery Adds Diagnostic Value to Both Clinical Variables and Dobutamine Echocardiography: A Study Based on Clinical Practice
,”
Eur. J. Echocardiogr.
,
6
(
4
), pp.
251
259
.
33.
Yin
,
W.
,
Alemu
,
Y.
,
Affeld
,
K.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2004
, “
Flow-Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves
,”
Ann. Biomed. Eng.
,
32
(
8
), pp.
1058
1066
.
34.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.
35.
Watanabe
,
N.
,
2017
, “
Noninvasive Assessment of Coronary Blood Flow by Transthoracic Doppler Echocardiography: Basic to Practical Use in the Emergency Room
,”
J. Echocardiogr.
,
15
(
2
), pp.
49
56
.
36.
van Wolferen
,
S. A.
,
Marcus
,
J. T.
,
Westerhof
,
N.
,
Spreeuwenberg
,
M. D.
,
Marques
,
K. M. J.
,
Bronzwaer
,
J. G. F.
,
Henkens
,
I. R.
,
Gan
,
C. T.-J.
,
Boonstra
,
A.
,
Postmus
,
P. E.
, and
Vonk-Noordegraaf
,
A.
,
2008
, “
Right Coronary Artery Flow Impairment in Patients With Pulmonary Hypertension
,”
Eur. Heart J.
,
29
(
1
), pp.
120
127
.
37.
Javadzadegan
,
A.
,
Yong
,
A. S.
,
Chang
,
M.
,
Ng
,
M. K.
,
Behnia
,
M.
, and
Kritharides
,
L.
,
2017
, “
Haemodynamic Assessment of Human Coronary Arteries Is Affected by Degree of Freedom of Artery Movement
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
3
), pp.
260
272
.
38.
Dhawan
,
S. S.
,
Avati Nanjundappa
,
R. P.
,
Branch
,
J. R.
,
Taylor
,
W. R.
,
Quyyumi
,
A. A.
,
Jo
,
H.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Giddens
,
D.
, and
Samady
,
H.
,
2010
, “
Shear Stress and Plaque Development
,”
Expert Rev. Cardiovasc. Ther.
,
8
(
4
), pp.
545
556
.
39.
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Timmins
,
L. H.
,
Binongo
,
J. N.
,
Golub
,
L. J.
,
Corban
,
M. T.
,
Finn
,
A. V.
,
Oshinski
,
J. N.
,
Quyyumi
,
A. A.
,
Giddens
,
D. P.
, and
Samady
,
H.
,
2012
, “
Association of Coronary Wall Shear Stress With Atherosclerotic Plaque Burden, Composition, and Distribution in Patients With Coronary Artery Disease
,”
J. Am. Heart Assoc.
,
1
(
4
), p.
e002543
.
40.
Hetterich
,
H.
,
Jaber
,
A.
,
Gehring
,
M.
,
Curta
,
A.
,
Bamberg
,
F.
,
Filipovic
,
N.
, and
Rieber
,
J.
,
2015
, “
Coronary Computed Tomography Angiography Based Assessment of Endothelial Shear Stress and Its Association With Atherosclerotic Plaque Distribution in-Vivo
,”
PLoS One
,
10
(
1
), p.
e0115408
.
41.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.
42.
Wang
,
Y.
,
Qiu
,
J.
,
Luo
,
S.
,
Xie
,
X.
,
Zheng
,
Y.
,
Zhang
,
K.
,
Ye
,
Z.
,
Liu
,
W.
,
Gregersen
,
H.
, and
Wang
,
G.
,
2016
, “
High Shear Stress Induces Atherosclerotic Vulnerable Plaque Formation Through Angiogenesis
,”
Regen. Biomater.
,
3
(
4
), pp.
257
267
.
43.
Yamamoto
,
T.
,
Iwasaki
,
K.
,
Arai
,
J.
, and
Umezu
,
M.
,
2015
, “
A Study of the Proximal Left Anterior Descending Coronary Artery Motion
,”
J. Medical Diagnostic Methods
,
4
(
3
), p.
182
.
44.
Liang
,
Y.
,
Zhu
,
H.
,
Gehrig
,
T.
, and
Friedman
,
M. H.
,
2008
, “
Measurement of the Transverse Strain Tensor in the Coronary Arterial Wall From Clinical Intravascular Ultrasound Images
,”
J. Biomech
, .
41
(
14
), pp.
2906
2911
.
45.
Valgimigli
,
M.
,
Rodriguez-Granillo
,
G. A.
,
Garcia-Garcia
,
H. M.
,
Vaina
,
S.
,
De Jaegere
,
P.
,
De Feyter
,
P.
, and
Serruys
,
P. W.
,
2007
, “
Plaque Composition in the Left Main Stem Mimics the Distal but Not the Proximal Tract of the Left Coronary Artery: Influence of Clinical Presentation, Length of the Left Main Trunk, Lipid Profile, and Systemic Levels of C-Reactive Protein
,”
J. Am. Coll. Cardiol.
,
49
(
1
), pp.
23
31
.
46.
Choy
,
J. S.
, and
Kassab
,
G. S.
,
2009
, “
Wall Thickness of Coronary Vessels Varies Transmurally in the LV but Not the RV: Implications for Local Stress Distribution
,”
Am. J. Physiol. Heart Circ. Physiol.
,
297
(
2
), pp.
H750
H758
.
47.
Bentzon
,
J. F.
,
Otsuka
,
F.
,
Virmani
,
R.
, and
Falk
,
E.
,
2014
, “
Mechanisms of Plaque Formation and Rupture
,”
Circ. Res.
,
114
(
12
), pp.
1852
1866
.
48.
Joshi
,
A. K.
,
Leask
,
R. L.
,
Myers
,
J. G.
,
Ojha
,
M.
,
Butany
,
J.
, and
Ethier
,
C. R.
,
2004
, “
Intimal Thickness Is Not Associated With Wall Shear Stress Patterns in the Human Right Coronary Artery
,”
Arterioscler. Thromb. Vasc. Biol.
,
24
(
12
), pp.
2408
2413
.
49.
Raut
,
S. S.
,
Jana
,
A.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2013
, “
The Importance of Patient-Specific Regionally Varying Wall Thickness in Abdominal Aortic Aneurysm Biomechanics
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
81010
.
50.
Moon
,
J. Y.
,
Suh
,
D. C.
,
Lee
,
Y. S.
,
Kim
,
Y. W.
, and
Lee
,
J. S.
,
2014
, “
Considerations of Blood Properties, Outlet Boundary Conditions and Energy Loss Approaches in Computational Fluid Dynamics Modeling
,”
Neurointervention
,
9
(
1
), pp.
1
8
.
51.
Prosi
,
M.
,
Perktold
,
K.
,
Ding
,
Z.
, and
Friedman
,
M. H.
,
2004
, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
,
37
(
11
), pp.
1767
1775
.
52.
Yang
,
C.
,
Bach
,
R. G.
,
Zheng
,
J.
,
Naqa
,
I. E.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K.
, and
Tang
,
D.
,
2009
, “
In Vivo IVUS-Based 3-D Fluid-Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis
,”
IEEE Trans. Biomed. Eng.
,
56
(
10
), pp.
2420
2428
.
53.
Ziadinov
,
E.
, and
Al-Sabti
,
H.
,
2013
, “
Localizing Intramyocardially Embedded Left Anterior Descending Artery During Coronary Bypass Surgery: Literature Review
,”
J. Cardiothorac. Surg.
,
8
(
1
), p.
202
.
You do not currently have access to this content.