In the absence of standardized symmetry assessments, quantifying symmetry based on the kinematic evolution of lower extremity joints can elucidate gait irregularities. The objective was to develop a novel cyclogram-based symmetry (CBS) method to quantify lower extremity joints' symmetry and assess the effect of six-month utilization of foot drop stimulator (FDS) on CBS of the lower limbs during hemiplegic gait poststroke. Twenty-four participants (13 stroke and 11 healthy controls (HC)) performed ten walking trials at a free cadence on level ground. Symmetry values were computed using geometric properties of bilateral cyclograms obtained from normalized sagittal ankle, knee, and hip kinematics. CBS and traditional temporospatial symmetry values were compared between the two groups using independent sample t-test. The effect of FDS utilization on the symmetry was assessed by a paired sample t-test computed at baseline and six-month follow up. The CBS method successfully showed that the HC group was significantly more symmetrical at the ankle (p = 0.001), knee (p = 0.001), and hip (p < 0.005) compared with the stroke group. The stroke group showed significant increment in the hip symmetry with FDS at the baseline but did not show any significant CBS changes at follow up. Pearson correlations revealed that hip and knee CBS had a significant influence on the overall walking speed. The CBS method presents a unique approach to calculate the symmetry based on the kinematics of lower extremities during gait.

References

References
1.
Morone
,
G.
,
Fusco
,
A.
,
Di Capua
,
P.
,
Coiro
,
P.
, and
Pratesi
,
L.
,
2012
, “
Walking Training With Foot Drop Stimulator Controlled by a Tilt Sensor to Improve Walking Outcomes: A Randomized Controlled Pilot Study in Patients With Stroke in Subacute Phase
,”
Stroke Res. Treat.
,
2012
, p.
523564
.
2.
Stein
,
R. B.
,
Everaert
,
D. G.
,
Thompson
,
A. K.
,
Chong
,
S. L.
,
Whittaker
,
M.
,
Robertson
,
J.
, and
Kuether, G.
,
2010
, “
Long-Term Therapeutic and Orthotic Effects of a Foot Drop Stimulator on Walking Performance in Progressive and Nonprogressive Neurological Disorders
,”
Neurorehabil. Neural Repair
,
24
(2), pp.
152
–1
67
.
3.
Nolan
,
K. J.
,
Savalia
,
K. K.
,
Lequerica
,
A. H.
, and
Elovic
,
E. P.
,
2009
, “
Objective Assessment of Functional Ambulation in Adults With Hemiplegia Using Ankle Foot Orthotics After Stroke
,”
PM R
,
1
(
6
), pp.
524
529
.
4.
Nolan
,
K. J.
, and
Yarossi
,
M.
,
2011
, “
Weight Transfer Analysis in Adults With Hemiplegia Using Ankle Foot Orthosis
,”
Prosthet. Orthotics Int.
,
35
(
1
), pp.
45
53
.
5.
Stein
,
R. B.
,
Chong
,
S.
,
Everaert
,
D. G.
,
Rolf
,
R.
,
Thompson
,
A. K.
,
Whittaker
,
M.
,
Robertson, J.
,
Fung, J.
,
Preuss, R.
,
Momose, K.
, and
Ihashi, K.
,
2006
, “
A Multicenter Trial of a Footdrop Stimulator Controlled by a Tilt Sensor
,”
Neurorehabil. Neural Repair
,
20
(
3
), pp.
371
379
.
6.
Everaert
,
D. G.
,
Stein
,
R. B.
,
Abrams
,
G. M.
,
Dromerick
,
A. W.
,
Francisco
,
G. E.
,
Hafner
,
B. J.
,
Huskey, T. N.
,
Munin, M. C.
,
Nolan, K. J.
, and
Kufta, C. V.
,
2013
, “
Effect of a Foot-Drop Stimulator and Ankle-Foot Orthosis on Walking Performance After Stroke: A Multicenter Randomized Controlled Trial
,”
Neurorehabil. Neural Repair
,
27
(7), pp. 579–591.
7.
Everaert
,
D. G.
,
Thompson
,
A. K.
,
Chong
,
S. L.
, and
Stein
,
R. B.
,
2010
, “
Does Functional Electrical Stimulation for Foot Drop Strengthen Corticospinal Connections?
,”
Neurorehabil. Neural Repair
,
24
, pp.
168
177
.
8.
Sabut
,
S. K.
,
Lenka
,
P. K.
,
Kumar
,
R.
, and
Mahadevappa
,
M.
,
2010
, “
Effect of Functional Electrical Stimulation on the Effort and Walking Speed, Surface Electromyography Activity, and Metabolic Responses in Stroke Subjects
,”
J. Electromyogr. Kinesiol.
,
20
(
6
), pp.
1170
1177.
9.
Chae
,
J.
,
2003
, “
Neuromuscular Electrical Stimulation for Motor Relearning in Hemiparesis
,”
Phys. Med. Rehabil. Clin. North Am.
,
14
(Suppl. 1), pp.
S93
109
.
10.
Daly
,
J. J.
, and
Ruff
,
R. L.
,
2007
, “
Construction of Efficacious Gait and Upper Limb Functional Interventions Based on Brain Plasticity Evidence and Model-Based Measures for Stroke Patients
,”
Sci. World J.
,
7
, pp.
2031
2045
.
11.
Peckham
,
P. H.
, and
Knutson
,
J. S.
,
2005
, “
Functional Electrical Stimulation for Neuromuscular Applications
,”
Annu. Rev. Biomed. Eng.
,
7
(
1
), pp.
327
360
.
12.
Sheffler
,
L. R.
, and
Chae
,
J.
,
2007
, “
Neuromuscular Electrical Stimulation in Neurorehabilitation
,”
Muscle Nerve
,
35
(
5
), pp.
562
590
.
13.
Pilkar
,
R.
,
Yarossi
,
M.
, and
Nolan
,
K. J.
,
2014
, “
EMG of the Tibialis Anterior Demonstrates a Training Effect After Utilization of a Foot Drop Stimulator
,”
Neurorehabilitation
,
35
(2), pp.
299
305
.
14.
Kottink
,
A. I.
,
Hermens
,
H. J.
,
Nene
,
A. V.
,
Tenniglo
,
M. J.
,
van der Aa
,
H. E.
,
Buschman
,
H. P.
, and
Ijzerman, M. J.
,
2007
, “
A Randomized Controlled Trial of an Implantable 2-Channel Peroneal Nerve Stimulator on Walking Speed and Activity in Poststroke Hemiplegia
,”
Arch. Phys. Med. Rehabil.
,
88
(
8
), pp.
971
978
.
15.
Kottink
,
A. I.
,
Oostendorp
,
L. J.
,
Buurke
,
J. H.
,
Nene
,
A. V.
,
Hermens
,
H. J.
, and
IJzerman
,
M. J.
,
2004
, “
The Orthotic Effect of Functional Electrical Stimulation on the Improvement of Walking in Stroke Patients With a Dropped Foot: A Systematic Review
,”
Artif. Organs
,
28
(
6
), pp.
577
586
.
16.
Hausdorff
,
J. M.
, and
Ring
,
H.
,
2008
, “
Effects of a New Radio Frequency-Controlled Neuroprosthesis on Gait Symmetry and Rhythmicity in Patients With Chronic Hemiparesis
,”
Am. J. Phys. Med. Rehabil.
,
87
(
1
), pp.
4
13
.
17.
Patterson
,
K. K.
,
Gage
,
W. H.
,
Brooks
,
D.
,
Black
,
S. E.
, and
McIlroy
,
W. E.
,
2010
, “
Evaluation of Gait Symmetry After Stroke: A Comparison of Current Methods and Recommendations for Standardization
,”
Gait Posture
,
31
(
2
), pp.
241
246
.
18.
Patterson
,
K. K.
,
Parafianowicz
,
I.
,
Danells
,
C. J.
,
Closson
,
V.
,
Verrier
,
M. C.
,
Staines
,
W. R.
,
Black, S. E.
, and
McIlroy, W. E.
,
2008
, “
Gait Asymmetry in Community-Ambulating Stroke Survivors
,”
Arch. Phys. Med. Rehabil.
,
89
(
2
), pp.
304
310
.
19.
Goswami
,
A.
,
1998
, “
A New Gait Parameterization Technique by Means of Cyclogram Moments: Application to Human Slope Walking
,”
Gait Posture
,
8
(
1
), pp.
15
36
.
20.
Kutilek
,
P.
,
Viteckova
,
S.
,
Svoboda
,
Z.
, and
Smrcka
,
P.
,
2013
, “
Kinematic Quantification of Gait Asymmetry in Patients With Peroneal Nerve Palsy Based on Bilateral Cyclograms
,”
J. Musculoskeletal Neuronal Interact.
,
13
(2), pp.
244
250
.http://www.ismni.org/jmni/pdf/52/13KUTILEK.pdf
21.
Oken
,
O.
, and
Yavuzer
,
G.
,
2008
, “
Spatio-Temporal and Kinematic Asymmetry Ratio in Subgroups of Patients With Stroke
,”
Eur. J. Phys. Rehabil. Med.
,
44
(
2
), pp.
127
132
.https://www.minervamedica.it/en/journals/europa-medicophysica/article.php?cod=R33Y2008N02A0127
22.
Ramanujam
,
A.
,
Pilkar
,
R.
,
Chervin
,
K.
, and
Nolan
,
K. J.
,
2013
, “
Kinematic Symmetry Assessment of Lower Limb Motions in Individuals With Stroke
,”
Arch. Phys. Med. Rehabil.
,
94
(
10
), p.
e33
.
23.
Wall
,
J. C.
, and
Turnbull
,
G. I.
,
1986
, “
Gait Asymmetries in Residual Hemiplegia
,”
Arch. Phys. Med. Rehabil.
,
67
(
8
), pp.
550
553
.https://www.archives-pmr.org/article/0003-9993(86)90556-3/pdf
24.
Weingarden
,
H. P.
, and
Hausdorff
,
J. M.
,
2007
, “
FES Neuroprosthesis Versus an Ankle Foot Orthosis: The Effect on Gait Stability and Symmetry
,”
Physiotherapy
,
93
(Suppl. 1), p.
S359
.https://www.bioness.com/Documents/press/AFO_L300_WCPT_Abstract_FNL_2.pdf
25.
Viteckova
,
S.
,
Kutilek
,
P.
,
Svoboda
,
Z.
,
Krupicka
,
R.
,
Kauler
,
J.
, and
Szabo
,
Z.
,
2018
, “
Gait Symmetry Measures: A Review of Current and Prospective Methods
,”
Biomed. Signal Process. Control
,
42
, pp.
89
100
.
26.
Grieve
,
D. W.
,
1969
, “
The Assessment of Gait
,”
Physiotherapy
,
55
(
11
), pp.
452
460
.
27.
Hershler
,
C.
, and
Milner
,
M.
,
1980
, “
Angle-Angle Diagrams in Above-Knee Amputee and Cerebral Palsy Gait
,”
Am. J. Phys. Med.
,
59
(
4
), pp.
165
183
.https://www.ncbi.nlm.nih.gov/pubmed/7416239
28.
Hershler
,
C.
, and
Milner
,
M.
,
1980
, “
Angle-Angle Diagrams in the Assessment of Locomotion
,”
Am. J. Phys. Med.
,
59
(
3
), pp.
109
125
.https://www.ncbi.nlm.nih.gov/pubmed/7395971
29.
Davis
,
R. B.
, III
,
Ounpuu
,
S.
,
Tyburski
,
D.
, and
Gage
,
J. R.
,
1991
, “
A Gait Analysis Data Collection and Reduction Technique
,”
Hum. Mov. Sci.
,
10
(
5
), pp.
575
587
.
30.
Schmid
,
A.
,
Duncan
,
P. W.
,
Studenski
,
S.
,
Lai
,
S. M.
,
Richards
,
L.
,
Perera
,
S.
, and
Wu, S. S.
,
2007
, “
Improvements in Speed-Based Gait Classifications are Meaningful
,”
Stroke
,
38
(
7
), pp.
2096
2100
.
31.
Crenshaw
,
S. J.
, and
Richards
,
J. G.
,
2006
, “
A Method for Analyzing Joint Symmetry and Normalcy, With an Application to Analyzing Gait
,”
Gait Posture
,
24
(
4
), pp.
515
521
.
32.
Roth
,
E. J.
,
Merbitz
,
C.
,
Mroczek
,
K.
,
Dugan
,
S. A.
, and
Suh
,
W. W.
,
1997
, “
Hemiplegic Gait. Relationships Between Walking Speed and Other Temporal Parameters
,”
Am. J. Phys. Med. Rehabil.
,
76
(
2
), pp.
128
133
.
33.
Awad
,
L. N.
,
Palmer
,
J. A.
,
Pohlig
,
R. T.
,
Binder-Macleod
,
S. A.
, and
Reisman
,
D. S.
,
2015
, “
Walking Speed and Step Length Asymmetry Modify the Energy Cost of Walking After Stroke
,”
Neurorehabil. Neural Repair
,
29
(
5
), pp.
416
423
.
You do not currently have access to this content.